• Title/Summary/Keyword: seismic-performance

Search Result 2,996, Processing Time 0.031 seconds

Optimum bracing design under wind load by using topology optimization

  • Kutuk, M. Akif;Gov, Ibrahim
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.497-510
    • /
    • 2014
  • Seismic and wind load performances of buildings are commonly improved by using bracing systems. In practice, standard bracing systems, such as X, Y, V, and K types are used. To determine the appropriate bracing type, the designer uses trial & error method among the standard bracings to obtain better results. However, using topology optimization yields more efficient bracing systems or new bracing can be developed depending on building and loading types. Determination of optimum bracing type for minimum deformation on a building under the effect of wind load is given in this study. A new bracing system is developed by using topology optimization. Element removal method is used to determine and remove the comparatively inefficient materials. Optimized bracing is compared with proposed bracing types available in the related literature. Maximum deformation value of building is used as performance indicator to compare effectiveness of different bracings to resist wind loads. The proposed bracing, yielded 99%, deformation reduction compared to the unbraced building.

Pushover analysis - result borders due to hinge formation orders

  • Kulkarni, Supriya R.;Narayan, K.S. Babu
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.173-187
    • /
    • 2018
  • Performance evaluation of RC frame building by nonlinear static pushover analysis that accounts for elastic and post elastic behavior is becoming very popular as a valid decision making tool in seismic hazard resistant designs. Available literature suggests great amount of interest has shown by researchers in suggesting refinements to geometric and material modelling to bridge the gap between analytical predictions and observed performances. Notwithstanding the attempts gaps still exists. Sequence of plastic hinge formation which has great influence on pushover analysis results is an area less investigated. This paper attempts to highlight the importance of hinge sequence considerations to make analysis results more meaningful. Variation in analysis results due to different hinge sequences have been quantified, compared and bounds on analysis results have been presented.

Selection of Architect Engineering Concept for Barge Mounted SMR Using Systems Engineering Approach

  • Hossen, Muhammed Mufazzal;Owino, Ohaga Eric;Jung, J.C.
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.17-32
    • /
    • 2014
  • The trade-off studies in the concept development stage to assess the relative goodness of alternative systems concepts for AE (architect engineering) design for the Barge Mounted SMR (BMSMR) is introduced. With respect to design margin, system performance, schedule and risk, the design selection is cond ucted using the following characteristics; barge mobility, system safety under the natural disaster (seismic), power output, interfacing with the other system, and the additional supporting functions as desalination. There are three findings that should be remedied; deficiencies in the assumed characteristics of the system being modeled, deficiencies in the test model, and excessively stringent system requirements. This study is performed using systems engineering approach with trade off matrix method. In order to execute this work, concept development stage is divided into three (3) phases as NA (needs analysis), CE (concept exploration), and CD (concept definition).

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

Analysis ana Correction of Experimental Errors in Pseudodynamic Test (유사동적실험 오차의 분석 및 보정)

  • 김남식;이상순;정우정;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.95-101
    • /
    • 1992
  • The Pseudodynamic test is a new experimental technique for simulating the earthquake response of structures or structural components in the time domain. It is especially efficient for testing structures that are too large, heavy or strong to be tested on a shaking table. But the obtained responses in the Pseudodynamic test are distorted by the experimental errors inevitably during control and measurement procedures. The studies are to investigate the effects of the experimental errors on the Pseudodynamic responses and apply a correction method to the Pseudodynamic testing algorithm. It is shown that the corrected responses using the Equivalent Energy Compensation Method are in a good correlation with the theoretical ones. Thus, the corrected Pseudodynamic responses could be reliable for evaluating the seismic performance of structural systems.

  • PDF

Experimental and Analytical Investigation of Web-transferred Diagrid Node under Seismic Condition

  • Jeong, Inyong;Ju, Young K.;Kim, Sang-Dae
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • The diagrid structural system is considered to be not only the best structural system for constructing free form structures, but also a very effective system in resisting lateral load. As a newly investigated structural system, its complicated node has not yet been completely investigated and minimal experimentation of manufacturing and constructing the system have been conducted. Therefore, the constructing cost of the diagrid structural system is still comparatively high. In this paper, the cyclic performance of a diagrid node with an H-section brace will be discussed. Design details that consider productivity were proposed and their structural performances were assessed through experimental and analytical investigation.

A Study on Seismic Performance Evaluation of RC Frame Retrofitted by Masonry Infill Wall and Steel Damper (조적채움벽 및 강재댐퍼 보강 RC 골조의 내진성능 평가에 관한 연구)

  • Lee Jung Han;Yang Won Jik;Kang Dae Eon;Song Han Beam;Oh Sang Hoon;Yi Waon Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.129-132
    • /
    • 2005
  • The primary purpose of this investigation is to find out the shear behavior and the shear capacity of RC bare frames, brick-infilled RC frames, and damper-retrofitted RC frames and to evaluate the average shear strength of brick--infill wall. The main variables art the absence of brick infill wall and steel plate slit damper. The test results show that the shear capacity of specimen IF-DR is 2.8 times as high as that of the specimen BF and it presents the fact that the retrofitting effect and the possibility of RC frame reuse with changing the slit damper is verified. And the average shear strength of the brick infill wall is figured to be at $5.0 kgf/cm^2$.

  • PDF

Procedure of drawing fragility curve as a function of material parameters

  • Kim, Jang-Ho;Li, Jing;Park, Jeong-Ho;Hong, Jong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.334-337
    • /
    • 2006
  • Generally, fragility curve has been used in predicting failure of structures due to seismic actions. In this research, the method of drawing fragility curve has been applied to evaluating success/failure of structures and satisfactory/unsatisfactory of concrete mixture performance based on material parameters. In the paper, a detailed explanation of the procedure of drawing fragility curve based on material parameter has been introduced. Fragility curve generating procedure includes generation of virtual data points from limited number of actual data points by bell curve implementation, determination of success/failure status of each data point by assigned criterion, and completion of final fragility curve. For practical applications, workability of concrete mixture content based on "unit water" has been used to obtain fragility curve. Detailed explanation of fragility curve drawing procedure for material parameters is presented.

  • PDF

A Study on the Structural Performance of Reinforced Concrete Shear Walls with An Opening (개구부가 있는 전단벽의 구조성능 평가)

  • Choi, Hyun-Ki;Choi, Youn-Cheul;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.102-105
    • /
    • 2006
  • Nowadays, increase of demands on efficient utilization of resources while construction process stimulates structural engineers to select remodeling to improve old buildings. To analyze the effects of openings that may be installed in the course of remodeling old buildings, an experimental research was carried out using four approximately half scale of specimens subjected to constant axial forces, and cyclic loading to simulate seismic conditions. Consequently, the existence of opening was verified to induce different observed damages, which caused by reduction of compression strut support formed on the surface of wall. Especially, the maximum force was revealed to decrease approximately 35% as openings were existed. As this tendency was appeared with stiffness and energy dissipation capacity.

  • PDF

A Study on the Structural Performance of Retrofitted RC Shear Walls with An Opening (피해를 입은 전단벽의 보강 후 구조성능 평가)

  • Kim, Hyun-Min;Choi, Youn-Cheul;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.234-237
    • /
    • 2006
  • A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening induced by remodeling. One of these specimens was tested in the as-built condition and the other two were retrofitted prior to testing. The retrofit involved the use of carbon fiber sheets and steel plates (thickness of 3mm) over the entire face of the wall. The test results show that the ultimate failure modes of the specimens were found to be shear fracture of the wall around the opening and two difference types of retrofitting strategy make the different effects of a rise in the strength of each specimen.

  • PDF