• Title/Summary/Keyword: seismic-performance

Search Result 2,996, Processing Time 0.024 seconds

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Evaluation of Seismic Performance of Bearing Wall Structure with Coupling Beam (연결보가 있는 벽식 구조물의 내진성능 평가)

  • Lee, Young-Wook;Tao, Zou
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1049-1052
    • /
    • 2008
  • Coupling beams have been used in bearing wall system during last decades. Practically their sectional effects are fully considered in analysis stage to control lateral displacement because they have good contribution to the stiffness of bearing wall system. But the high resultant forces of coupling beam are not fully satisfied in design stage because coupling beams are restricted in sectional size. In this paper the performance of bearing wall system with coupling beam has been evaluated based on improved equivalent linearization procedure of FEMA 440. 15 storied building is selected for analysis. Variables for performance evaluation are natural period, degree of coupling and soil site. To evaluate performance, demand capacity spectrum is calculated based on KBC 2005. As a result, for the most of the cases the life safety limit of chord rotation of coupling beam is less than the performance point of system for soil site $S_D$. That means that the coupling beam can be severly damaged before the system reaches at performance point.

  • PDF

Transverse Reinforcement for Circular Internally Confined Hollow RC column (원형 내부 구속 중공 RC 기둥의 심부 구속 횡방향 철근 연구)

  • Won, Deok Hee;Han, Taek Hee;Park, Woo Sun;Park, Jong Sub;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.927-935
    • /
    • 2013
  • Recently, bridge structures has progressed the researches about seismic performance by occurrence of earthquake increased compared with the past. In the substructure of bridge, confining transverse reinforcement has arranged in plastic hinge region to resist the lateral load which increased the lateral confining effect. Columns are increased the seismic performance through secure of the stiffness and ductility The design specification for arrangement of confining transverse reinforcement same specification of domestic and international that suggested to solid reinforced concrete column(RC). This design specification have limits for Internally Confined Hollow RC(ICH RC) column because of different the component and performance characteristics of column. In this paper suggested the modified equation for economics and rational design through investigation of displacement ductility when applied the existing specification at the steel composite hollow RC column.

Performance assessment of buckling restrained brace with tubular profile

  • Cao, Yan;Azar, Sadaf Mahmoudi;Shah, S.N.R.;Salih, Ahmed Fathi Mohamed;Thiagi, Tiana;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.323-333
    • /
    • 2020
  • In recent years, there has been an upsurge for the usage of buckling restrained braces (BRB) rather than ordinary braces, as they have evidently performed better. If the overall brace buckling is ignored, BRBs are proven to have higher energy absorption capacity and flexibility. This article aims to deliberate an economically efficient yet adequate type of all-steel BRB, comprised of the main components as in traditional ones, such as : (1) a steel core that holds all axial forces and (2) a steel restrainer tube that hinders buckling to occurr in the core; there is a more practical detailing in the BRB system due to the elimination of a filling mortar. An investigation has been conducted for the proposed rectangular-tube core BRB and it is hysteric behavioral results have been compared to previous researches conducted on a structure containing a similar plate core profile that has the same cross-sectional area in its core. A loss of strength is known to occur in the BRB when the limiting condition of local buckling is not satisfied, thus causing instability. This typically occurs when the thickness of the restrainer tube's wall is smaller than the cross-sectional area of the core plate or its width. In this study, a parametric investigation for BRBs with different formations has been performed to verify the effect of the design parameters such as different core section profiles, restraining member width to thickness ratio and relative cross-sectional area of the core to restrainer, on buckling load evaluation. The proposed BRB investigation results have also been presented and compared to past BRB researches with a plate profile as the core section, and the advantages and disadvantages of this configuration have been discussed, and it is concluded that BRBs with tubular core section exhibit a better seismic performance than the ones with a plate core profile.

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

Experimental Study for Earthquake and Subsidence-resistant Performance Evaluation of iPVC Buried Water Pipe (iPVC 매립 상수도관의 내진 성능 및 내침하 성능 평가를 위한 시험적 연구)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Jae-Bong;Ju, Bu-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • Water pipes are important facilities and consist of pipes of various specifications and materials. The annual average number of earthquakes in Korea is steadily increasing. Therefore, in case of the water pipe, it is estimated necessary to prepare for earthquakes. Damages to the water pipe by the earthquake can cause problems such as water supply and fire suppression, and cause damage to life and property. In Korea, however, it is difficult to find examples of seismic performance evaluation of water pipes based on experimental study. Damage to the water pipes by the earthquake is caused by the displacement-controlled behavior of the ground which is the liquifaction and fault lines. Especially, The damage to the water pipes by the earthquake is concentrated on the joint of the pipe. In particular, piping less than 200mm in diameter was found to be dangerous. Thus, in this study, the seismic and settlement performance of iPVC buried water pipes with fixed joints with a clamp of 150mm was evaluated with a test approach.

Seismic Performance Evaluation of Unreinforced and ECC-jacketed Masonry Fences using Shaking Table Test (진동대실험을 사용한 비보강 및 ECC 자켓 보강 조적담장의 내진성능평가)

  • Yonghun Lee;Jinwoo Kim;Jae-Hwan Kim;Tae-Sung Eom;Sang-Hyun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.182-192
    • /
    • 2023
  • In this study, the efficacy of Engineered Cementitious Composite(ECC) jacket for masonry fences subjected to lateral dynamic load was experimentally verified through a shaking table test, comparing it with the performance of an unreinforced masonry(URM) fence. Firstly, dominant frequencies, modal damping ratios and deformed shapes were identified through an impact hammer test. URM and ECC-strengthened fences with heights of 940mm and 970mm had natural frequencies of 6.4 and 35.3Hz, and first modal damping ratios of 7.0 and 5.3%, respectively. Secondly, a shaking table test was conducted in the out-of-plane direction, applying a historical earthquake, El Centro(1940) scaled from 25 to 300%. For the URM fence, flexural cracking occurred at the interface of brick and mortar joint(i.e., bed joint) at the ground motion scaled to 50%, and out-of-plane overturning failure followed during the subsequent test conducted at the ground motion scaled to 30%. On the other hand, the ECC-jacketed fence showed a robust performance without any crack or damage until the ground motion scaled to 300%. Finally, the base shear forces exerted upon the URM and ECC-jacketed fences by the ground motions scaled to 25~300% were evaluated and compared with the ones calculated according to the design code. In contrast to the collapse risk of the URM fence at the ground motion of 1,000-year return period, the ECC-jacketed fence was estimated to remain safe up to the 4,800-year return period ground motion.