• Title/Summary/Keyword: seismic wave

Search Result 778, Processing Time 0.028 seconds

Constrained Effect of Soil Nail Head on the Earthquake Load (지진하중에 의한 쏘일네일 두부구속효과)

  • Oh, Joungkeun;Kang, Hongsig;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2013
  • In this study, the tests were carried out for the behavior according to method of constrained nail head of slope reinforced with soil nail under dynamic loading, by using shaking table. Shaking table tests were carried out by applying Hachinohe seismic wave having the long-period characteristics and Ofunato seismic wave having short-period characteristics, as changing constrained and unconstrained condition of nail head, and so on. Failure mode, ground acceleration characteristics, vertical displacement and horizontal displacement of slope were compared and analyzed on the basis of results obtained from the test. Results of carrying out shaking table test showed that both short-period wave and long-period wave had large effects on slope, and constraint of nail head was found to have large shear resistance for dynamic load. And it was confirmed that stability of slope under seismic loading was largely improved by constrained head of soil nail.

Development of Automatic Shear-wave Source for Downhole Seismic Method (다운홀 탄성파 기법용 전단파 자동 가진원의 개발)

  • Bang, Eun-Seok;Sung, Nak-Hoon;Kim, Jung-Ho;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.27-37
    • /
    • 2007
  • Downhole seismic method is very economic and easy to operate because it uses only one borehole and simple surface source to obtain the shear wave velocity profile of a site. In this study, automatic shear wave source was developed for efficient downhole seismic testing. This source is motor-spring type and easy to control. It can lessen the labor of operator and the working time. Moreover, it can provide better and repetitive signals for data interpretation. By combining developed automatic source with automatic receiver system, PC based data acquisition system, advanced managing program, and semi-automatic downhole performing system were constructed. Through comparison test with manual source, advantages of automatic source were verified. Constructed semi-automatic downhole testing system including automatic shear wave source was applied to the soft soil site. The applicability and reliability were verified and the importance of automating testing system for obtaining reliable result was emphasized.

High Resolution Seismic Reflection Method Using S-Waves: Case Histories for Ultrashallow Bedrocks (S파를 이용한 고해상도 탄성파 반사법 탐사: 지반표층부에 대한 적용사례)

  • Kim Sung-Woo;Woo Ki-Han;Han Myung-Ja;Jang Hae-Dong;Choi Yong-Kyu;Kong Young-Sae
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • This paper demonstrates the feasibility of using shallow S-wave, high-resolution seismic reflection surveys to characterize geological structure and stratigraphy of basement rocks for civil engineering purposes. S-wave seismic reflections from depths less than 20 m were recorded along the top of steep readout slopes. Seismic reflection data were recorded using a standard CDP acquisition method with a 24-channel seismograph and a sledge-hammer SH-wave source. The data were acquired using a split-spread source-receiver geometry with a 2 m shot-and-receiver interval, and then were processed to enhance S/N ratio of the data, to improve resolvable power of the seismic section, and to get velocity information of the basement rock. The final seismic reflection profiles using the CDP technique has imaged surfaces as shallow as less than 1m and resolved beds as thin as 1m. The migrated reflection sections possess sufficient quality to correlate the prominent reflection events to the bedding planes and faults identified on the readout outcrops. Similar S-wave reflection surveys could also be used to produce the necessary details of a geological structure of shallow bedrocks to pinpoint optimum locations for monitor wells of civil engineering purposes.

Pounding analysis of RC bridge considering spatial variability of ground motion

  • Han, Qiang;Dong, Huihui;Du, Xiuli;Zhou, Yulong
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1029-1044
    • /
    • 2015
  • To investigate the seismic pounding response of long-span bridges with high-piers under strong ground motions, shaking table tests were performed on a 1/10-scaled bridge model consisting of three continuous spans with rigid frames and one simply-supported span. The seismic pounding responses of this bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitations were experimentally studied. The influence of dampers to the seismic pounding effects at the expansion joints was analyzed through nonlinear dynamic analyses in this research. The seismic pounding effects obtained from numerical analyses of the bridge model are in favorable agreement with the experimental results. Seismic pounding effect of bridge superstructures is dependent on the structural dynamic properties of the adjacent spans and characteristics of ground motions. Moreover, supplemental damping can effectively mitigate pounding effects of the bridge superstructures, and reduce the base shear forces of the bridge piers.

Wave shape analysis of seismic records at borehole of TTRH02 and IWTH25 (KiK-net)

  • Kamagata, Shuichi
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.297-312
    • /
    • 2020
  • The KiK-net by NIED is a vertical array measurement system. In the database of KiK-net, singular pulse waves were observed in the seismic record at the borehole of TTRH02 during the mainshock (the magnitude of Japan Meteorological Agency (MJ) 7.3, MW 6.8) and aftershock (Mj 4.2) of Tottori-ken Seibu earthquake in 2000. Singular pulse waves were also detected in the seismic records at the borehole of IWTH25 during the Iwate-Miyagi Nairiku earthquake in 2008 (MJ 7.2, MW 6.9). These pulse waves are investigated by using the wave shape analysis methods, e.g., the non-stationary Fourier spectra and the double integrated displacement profiles. Two types of vibration modes are discriminated as the occurrence mechanism of the singular pulse waves. One corresponds to the reversal points in the displacement profile with the amplitude from 10-4 m to 10-1 m, which is mainly related to the fault activity and the amplification pass including the mechanical amplification (collision) of the seismograph in the casing pipe. The other is the cyclic pulse waves in the interval of reversal points, which is estimated as the backlash of the seismograph itself with the amplitude from 10-5 m to 10-4 m.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Experimental study on Chinese ancient timber-frame building by shaking table test

  • Zhang, Xi-Cheng;Xue, Jian-Yang;Zhao, Hong-Tie;Sui, Yan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.453-469
    • /
    • 2011
  • A one-story, wooden-frame, intermediate-bay model with Dou-Gon designed according to the Building Standards of the Song Dynasty (A.D.960-1279), was tested on a unidirectional shaking table. The main objectives of this experimental study were to investigate the seismic performance of Chinese historic wooden structure under various base input intensities. El Centro wave (N-S), Taft wave and Lanzhou wave were selected as input excitations. 27 seismic geophones were instrumented to measure the real-time displacement, velocity and acceleration respectively. Dynamic characteristics, failure mode and hysteretic energy dissipation performance of the model are analyzed. Test results indicate that the nature period and damping ratio of the model increase with the increasing magnitude of earthquake excitation. The nature period of the model is within 0.5~0.6 s, the damping ratio is 3~4%. The maximum acceleration dynamic magnification factor is less than 1 and decreases as the input seismic power increases. The frictional slippage of Dou-Gon layers (corbel brackets) between beams and plates dissipates a certain amount of seismic energy, and so does the slippage between posts and plinths. The mortise-tenon joint of the timber frame dissipates most of the seismic energy. Therefore, it plays a significant part in shock absorption and isolation.

Influence of Predominant Periods of Seismic Waves on a High-rise Building in SSI Dynamic Analyses with the Complete System Model (연속체 모델에 기초한 SSI 동적해석 시 지진파 탁월주기가 초고층 건물에 미치는 영향)

  • You, Kwangho;Kim, Juhyong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.5-14
    • /
    • 2019
  • Recently in Korea, researches on seismic analyses for high-rise buildings in a large city have been increasing because earthquakes have occurred. However, the ground conditions are not included in most of seismic researches and analyses on a high-rise building. Also the influence of the predominant period of a seismic wave is not considered in reality. Therefore, in this study, the influence of the predominant period of a seismic wave on the dynamic behavior of high-rise buildings was analyzed based on the complete system model which can consider the grounds. For this purpose, 2D dynamic analyses based on a linear time history analysis were performed using MIDAS GTS NX, a finite-element based program. Dynamic behavior was analyzed in terms of horizontal displacements, drift ratios, bending stresses, and building weak zones. As a result, in overall, the dynamic response of a high-rise building become bigger as the predominant period of a seismic wave become longer. It was also found that the predominant period had a greater influence than other parameters, ground conditions and peak ground acceleration.

Evaluation of Design Response Spectrum in Sejong City Using Gyeongju and Pohang Type Seismic Waves (경주·포항형 지진파에 대한 세종시 지역의 설계응답스펙트럼 성능평가)

  • Oh, Hyun Ju;Lee, Sung Hyun;Park, Hyung Choon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.503-512
    • /
    • 2024
  • In the seismic design standard, input waves for different levels of seismic performance are proposed in the form of design response spectra. At the time of establishing these standards, measured records of significant earthquakes that occurred domestically, such as the 2016 Gyeongju earthquake and the 2017 Pohang earthquake, were not included. Additionally, for the ground response analysis, shear wave velocities representing ground amplification characteristics were derived from the results of standard penetration tests (N-values) and applied in empirical formulas. This approach may not adequately capture sufficient information about the characteristics of domestic ground properties. Therefore, in this study, seismic records from the Gyeongju and Pohang earthquakes were modified to adjust the bedrock standard design response spectra. Ground response analyses were conducted using shear wave velocity profiles obtained from borehole tests in the Sejong City area. The shape of the response spectrum and ground amplification coefficient obtained from the ground response analysis were then compared with those from existing studies and seismic design standard.

The Analysis of Dynamic Behavior of Concrete Gravity Dam (중력식콘크리트댐의 동적거동분석)

  • 임정열;이종욱;오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.155-162
    • /
    • 2001
  • In this study, it was performed that the seismic response analysis using long period earthquake wave and short period earthquake wave on dynamic behavior of concrete gravity dam. The results showed that if the same magnitude earthquake waves acted on concrete dam, the maximum displacement and stress at dam crest of long period wave(0funato wave) were about 30 % larger than those of short period wave(Hachinohe wave). And the response acceleration of dam crest was amplified about 5 times in long period earthquake wave and about 3 times in short period earthquake wave.

  • PDF