• Title/Summary/Keyword: seismic structural fragility

Search Result 221, Processing Time 0.028 seconds

Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes

  • Yon, Burak
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.709-718
    • /
    • 2020
  • Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

A State-of-the-Art of Probabilistic Seismic Fragility Analysis of Critical Structure (핵심 구조물의 확률론적 지진취약도 분석: 기술현황)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.226-232
    • /
    • 2000
  • Seismic probabilistic risk assessment(RA) rather than deterministic assessment provides more valuable information and insight for resolving seismic safety issues in nuclear power plant design. In the course of seismic PRA seismic fragility analysis is the most significant and essential phase especially for structural or mechanical engineers. Lately the seismic fragility analysis is taken as a useful tool in general structural engineering as well. A systemized and synthesized procedure or technology related to seismic fragility analysis of critical industrial facilities reflecting the unique experiences and database in Korea is urgently required. This paper gives a state-of-the-art reviews of PRA and briefly summarizes the technologies related to PRA and seismic fragility analysis before developing an unique technology considering characteristics of Korean database. Some key items to be resolved theoretically or technically are extracted and presented for the future research.

  • PDF

A Classification Methodology of Structural Types of RC Buildings for Improving Seismic Fragility Functions (지진취약도 함수 개선을 위한 철근콘크리트 건물의 구조 유형 분류 방안)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.285-292
    • /
    • 2020
  • The methodology classifying structural types of concrete buildings in the existing seismic fragility functions is too simple to estimate the fragility of existing residential buildings and neighborhood living facilities, especially those below five stories. Their structural types are dependent on information contained in the building register such as main use, total floor area, story, permission date, and first story floor area of the individual building. All of this information is not considered for classifying types in the existing functions; therefore, the goal of this study was to suggest a methodology that classifies structural types of concrete buildings by utilizing such information. The results of this study showed that the suggested methodology can classify structural types better than the existing methodology. Nevertheless, there is still a need to simplify the methodology because fragility estimation demands quickness rather than accuracy.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

Seismic Fragility Analysis of Lightning Arrester using Capacity Spectrum Method (역량스펙트럼 방법을 이용한 피뢰기의 지진취약도 해석)

  • Kim, Gwang-Jeon;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • In this paper, seismic fragility analysis of lightning arrester is performed using capacity spectrum method(CSM). Since seismic fragility analysis of structure with many structural members is required to calculate many inelastic responses for several tens or hundreds of ground motions, simple method such as CSM is more appropriate than response history analysis(RHA). In general, accuracy of seismic response evaluated by CSM is less than that by RHA. In order to increase accuracy of CSM, equivalent SDOF method and performance point calculation technique are applied to CSM. Seismic fragility method proposed by Shinozuka et al. is used. In order to evaluate site effect of ground motions on seismic fragility, 60 different site classification earthquakes are selected as input ground motions. From the seismic fragility curves of lightning arrester evaluated by CSM and RHA, it can be observed that the seismic fragility curves evaluated by CSM are very similar to those by RHA. Also, it can be observed that main seismic failure mode of lightning arrest is bushing breakage.

Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources

  • Mosleh, Araliya;Razzaghi, Mehran S.;Jara, Jose;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.517-538
    • /
    • 2016
  • This paper presents a probabilistic fragility analysis for two groups of bridges: simply supported and integral bridges. Comparisons are based on the seismic fragility of the bridges subjected to accelerograms of two seismic sources. Three-dimensional finite-element models of the bridges were created for each set of bridge samples, considering the nonlinear behaviour of critical bridge components. When the seismic hazard in the site is controlled by a few seismic sources, it is important to quantify separately the contribution of each fault to the structure vulnerability. In this study, seismic records come from earthquakes that originated in strike-slip and reverse faulting mechanisms. The influence of the earthquake mechanism on the seismic vulnerability of the bridges was analysed by considering the displacement ductility of the piers. An in-depth parametric study was conducted to evaluate the sensitivity of the bridges' seismic responses to variations of structural parameters. The analysis showed that uncertainties related to the presence of lap splices in columns and superstructure type in terms of integral or simply supported spans should be considered in the fragility analysis of the bridge system. Finally, the fragility curves determine the conditional probabilities that a specific structural demand will reach or exceed the structural capacity by considering peak ground acceleration (PGA) and acceleration spectrum intensity (ASI). The results also show that the simply supported bridges perform consistently better from a seismic perspective than integral bridges and focal mechanism of the earthquakes plays an important role in the seismic fragility analysis of highway bridges.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

Comparative Study on Seismic Fragility Curve Derivation Methods of Buried Pipeline Using Finite Element Analysis (유한요소 해석을 활용한 매설 배관의 지진 취약도 곡선 도출 기법 비교)

  • Lee, Seungjun;Yoon, Sungsik;Song, Hyeonsung;Lee, Jinmi;Lee, Young-Joo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.213-220
    • /
    • 2023
  • Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.

A new damage index for seismic fragility analysis of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.875-890
    • /
    • 2016
  • A new structural damage index for seismic fragility analysis of reinforced concrete columns is developed based on a local tensile damage variable of the Lee and Fenves plastic-damage model. The proposed damage index is formulated from the nonlinear regression of experimental column test data. In contrast to the response-based damage index, the proposed damage index is well-defined in the form of a single monotonically-increasing function of the volume weighted average of local damage distribution, and provides the necessary computability and objectivity. It is shown that the present damage index can be appropriately zoned to be used in seismic fragility analysis. An application example in the computational seismic fragility evaluation of reinforced concrete columns validates the effectiveness of the proposed damage index.