• 제목/요약/키워드: seismic strength

검색결과 1,371건 처리시간 0.026초

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.

철근콘크리트 골조와 강재댐퍼의 강성비 및 내력비에 따른 내진보강 성능 (Performance of Seismic Retrofit According to the Stiffness and Strength Ratios of Steel Damper to Reinforced Concrete Frame)

  • 백은림;오상훈;이상호
    • 한국지진공학회논문집
    • /
    • 제17권4호
    • /
    • pp.171-180
    • /
    • 2013
  • The purpose of this study is to evaluate the effectiveness of the seismic retrofit performance for a reinforced concrete structure with steel damper. The nonlinear static analysis of the RC frame specimens with and without retrofit using the steel damper was conducted and the reliability of the analysis was verified by comparing the analysis and test results. Using this analysis model and method, additional nonlinear analysis was conducted considering varying stiffness and strength ratios between RC frame and steel damper and the failure mode of RC frame. As the result of the study, the total absorbed energy increased and the damage of RC frame was reduced as stiffness and strength ratios increased. The seismic retrofit performance, evaluated by means of the yield strength, increasing ratio of the absorbed energy and damage of the frame, increased linear proportionally with the increase of the strength ratio. In addition, the seismic retrofit performance was stable for stiffness ratios larger than 4~5. The energy absorption capacity of the frame governed by shear failure was better than that of the frame governed by flexure failure.

일반강도 및 고강도 재료를 사용한 보-기둥 접합부의 지진응답 (Seismic Response of Exterior Beam-Column Subassemblies Using Normal and High-Strength Materials)

  • 장극관;서대원
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.83-94
    • /
    • 1999
  • 고강도 콘크리트는 부재의 내력증가 뿐만아니라 내구성을 증대시키기 때문에 널리 사용되고 있다 그러나 고강도 철근콘크리트 보-기둥 접합부의 구조성능에 관한 연구자료는 충분하지 않은 실정이며 현행규준 또는 일반강도 콘크리트의 실험에 근거하고 있다 따라서 본 연구에서는 일반강도 $(f_c'=240kg/\textrm{cm}^2) 및 고강도(f_c'=700kg/\textrm{cm}^2)$ 콘크리트를 사용하여 실제의 중진지역 30층 실제구조물의 2/3크기를 축소한 보와 기둥 슬래브로 구성된 네 개의 부분구조체를 제작하여 유사정적실험을 통한 구조거동과 파괴형태를 조사하고 전단내력에 대한 현행규준과 비교 검토하였다.

  • PDF

유사동적 실험에 의한 기존 RC 교각의 내진성능 평가 (Seismic Performance Evaluation of Existing RC Bridge Piers by Pseudo Dynamic Test)

  • 박종협
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.364-371
    • /
    • 2000
  • The pseudo dynamic test has been carried out so as to investigate the seismic performance of RC bridge piers strengthened with and without glass fiber sheets. The Lessons from severe demage of many infrastructures in Kobe(1995) and Northridge(1996) earthquakes have emphasized the need to develop the retrofit measures to enhance flexural strength, ductility and shear strength of RC bridge piers nonseismically designed before 1992. Therefore, the objective of this experimental research is to investigate the seismic behavior of circular reinforced concrete bridge piers by the pseudo dynamic test. and then to enhance the ductility of concrete piers strengthening with glass fiber sheets in the plastic hinge region. 7 circular RC bridge piers were made in a 1/3.4 scale. Important test parameters are confinement steel ratio, retrofitting. load pattern, etc. The seismic behavior of circular concrete piers under artificial ground motions has been evaluated through strength and stiffness degradation, energy dissipation. It can be concluded that existing bridge piers wrapped with glass fibers in the plastic hinge regions could have enough seismic performance.

  • PDF

Nonlinear seismic performance of code designed perforated steel plate shear walls

  • Barua, Kallol;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.85-98
    • /
    • 2019
  • Nonlinear seismic performances of code designed Perforated Steel Plate Shear Walls (P-SPSW) were studied. Three multi-storey (4-, 8-, and 12-storey) P-SPSWs were designed according to Canadian seismic provisions and their performance was evaluated using time history analysis for ground motions compatible with Vancouver response spectrum. The selected code designed P-SPSWs exhibited excellent seismic performance with high ductility and strength. The current code equation was found to provide a good estimation of the shear strength of the perforated infill plate, especially when the infill plate is yielded. The applicability of the strip model, originally proposed for solid infill plate, was also evaluated for P-SPSW and two different strip models were studied. It was observed that the strip model with strip widths equal to center to center diagonal distance between each perforation line could reasonably predict the inelastic behavior of unstiffened P-SPSWs. The strip model slightly underestimated the initial stiffness; however, the ultimate strength was predicted well. Furthermore, applicability of simple shear-flexure beam model for determination of fundamental periods of P-SPSWs was studied.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

전단저항키 실험 및 내진성능평가 (Experimental and Analytical Evaluation of Seismic Performance of Shear-Resistance Key)

  • 박종철;강형택;박찬민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.523-528
    • /
    • 2000
  • In multi-span bridges, a shear key is often used to distribute the seismic force to the case, the shear key is sometimes required to be reinforced to withstand the seismic force. To improve the strength of shear key, the strength and failure mode of shear key have to be carefully estimated and the proper reinforcement scheme should be elaborated. The test results show that the strength of shear key is 2.5 times higher than the strength calculated by PCI design handbook. Also the strength of shear key is greatly improved by placing PT bars into shear key. In this study, the analytical method to evaluate the strength of sheat key and the reinforcement scheme are proposed.

  • PDF

고장력 철근이 적용된 철근콘크리트 보-기둥 접합부 파괴모드에 대한 실험적 연구 (Experimental Study on Seismic Performance of Beam-column Connections with High Strength Reinforcements)

  • 김대훈;박아론;이기학
    • 한국공간구조학회논문집
    • /
    • 제16권2호
    • /
    • pp.61-68
    • /
    • 2016
  • Behavior of RC(Reinforced-concrete) beam-column connections has been subjected to the earthquake loading has been determined by shear and attachment mechanism. However, since the shear and attachment are very fragile for cycle loadings. Through occurring plastic hinges at the beam, the column and the connection should remain elastic condition and the beam should dissipate the energy from the earthquake. This study was investigate on the seismic performance of 6 RC beam - column connections built with the high strength reinforcements (700MPa) based on design and detailing requirements in the ACI 318-05 Provision and KCI-07 appendix II. This is aimed to evaluate the effect of the high-strength reinforcements as used the beam-column connection members. The main comparisons were the seismic performance of the connections affect the seismic performance in terms of strength, stiffness and ductility, joint shear stress-strain. A total of 6 beam-column specimens were built with a 1/2 scale and subjected to the cyclic loadings. Main design considerations were the area of the longitudinal reinforcements of the beam and details of the beam-column joint designed based on the seismic code. Cyclic test results are given and recommendations for the usage of high strength reinforcements for the seismic design is provided.

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

Square CFST columns under cyclic load and acid rain attack: Experiments

  • Yuan, Fang;Chen, Mengcheng;Huang, Hong
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.171-183
    • /
    • 2019
  • As China's infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.