• 제목/요약/키워드: seismic safety assessment

검색결과 216건 처리시간 0.052초

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

핵심 구조물의 확률론적 지진취약도 분석: 기술현황 (A State-of-the-Art of Probabilistic Seismic Fragility Analysis of Critical Structure)

  • 조양희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.226-232
    • /
    • 2000
  • Seismic probabilistic risk assessment(RA) rather than deterministic assessment provides more valuable information and insight for resolving seismic safety issues in nuclear power plant design. In the course of seismic PRA seismic fragility analysis is the most significant and essential phase especially for structural or mechanical engineers. Lately the seismic fragility analysis is taken as a useful tool in general structural engineering as well. A systemized and synthesized procedure or technology related to seismic fragility analysis of critical industrial facilities reflecting the unique experiences and database in Korea is urgently required. This paper gives a state-of-the-art reviews of PRA and briefly summarizes the technologies related to PRA and seismic fragility analysis before developing an unique technology considering characteristics of Korean database. Some key items to be resolved theoretically or technically are extracted and presented for the future research.

  • PDF

다른 온도환경에서 고감쇠고무 적층받침의 경년열화를 고려한 면진 원전구조물의 지진응답 (Seismic Responses of Seismically-Isolated Nuclear Power Plants considering Aging of High Damping Rubber Bearing in Different Temperature Environments)

  • 박준희;전영선;최인길
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.385-392
    • /
    • 2014
  • 면진장치는 지진력을 감소시키기 위하여 사용되어왔다. 원자력발전소에 면진장치가 적용된다면, 운영기간동안 구조물과 기기들은 동일한 내구성 및 성능이 확보되어야 한다. 본 연구에서는 면진된 원전의 지진에 대한 안전성을 확보하기 위하여 면진구조물의 장기거동을 해석적으로 분석하였다. 경년열화에 의한 면진장치 특성을 분석하였고, 다른 온도환경에서 면진장치의 경년열화에 의한 구조물의 지진응답을 분석하였다. 해석결과에 의하면 면진장치의 경년열화에 의하여 면진구조물의 고유진동수는 증가하였다. 그러나 면진 구조물의 최대가속도와 최대변위는 온도에 따라 크게 변하지 않았다. 면진장치의 열화에 의하여 구조물의 손상은 발생하지 않았지만 목표진동수 영역에서 스펙트럼가속도는 온도에 따라 증가하였다. 따라서 면진구조물에서 면진장치는 온도에 따른 지진응답의 증가를 고려하여 설치 및 제작해야 할 것으로 판단된다.

Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design

  • Miano, Andrea;de Silva, Donatella;Compagnone, Alberto;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.481-494
    • /
    • 2020
  • In this paper, a probability-based procedure to evaluate the performance of existing RC structures exposed to seismic and fire actions is presented. The procedure is demonstrated with reference to an existing old school building, located in Italy. The vulnerability assessment of the building highlights deficiencies under both static and seismic loads. Retrofit operations are designed to achieve the seismic safety. The idea of the work consists in assessing the performance of the existing and retrofitted building in terms of both the seismic and fire resistance. The seismic retrofit and fire resistance upgrading follow different paths, depending on the specific configuration of the building. A good seismic retrofit does not entail an improving of the fire resistance and vice versa. The goal of the current work is to study the variation of response due to the uncertainties considered in records/fire curves selection and to carry out the assessment of the studied RC structure by obtaining fragility curves under the effect of different records/temperature. The results show the fragility curves before and after retrofit operations and both in terms of seismic performance and fire resistance performance, measuring the percent improving for the different limit states.

Beyond design basis seismic evaluation of underground liquid storage tanks in existing nuclear power plants using simple method

  • Wang, Shen
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2147-2155
    • /
    • 2022
  • Nuclear safety-related underground liquid storage tanks, such as those used to store fuel for emergency diesel generators, are critical components for safety of hundreds of existing nuclear power plants (NPP) worldwide. Since most of those NPP will continue to operate for decades, a beyond design base (BDB) seismic screening of safety-related underground tanks in those NPP is beneficial and essential to public safety. The analytical methodology for buried tank subjected to seismic effect, including a BDB seismic evaluation, needs to consider both soil-structure and fluid-structure interaction effects. Comprehensive analysis of such a soil-structure-fluid system is costly and time consuming, often subjected to availability of state-of-art finite element tools. Simple, but practically and reasonably accurate techniques for seismic evaluation of underground liquid storage tanks have not been established. In this study, a mechanics based solution is proposed for the evaluation of a cylindrical underground liquid storage tank using hand calculation methods. For validation, a practical example of two underground diesel fuel tanks in an existing nuclear power plant is presented and application of the proposed method is confirmed by using published results of the computer-aided System for Analysis of Soil Structural Interaction (SASSI). The proposed approach provides an easy to use tool for BDB seismic assessment prior to making decision of applying more costly technique by owner of the nuclear facility.

Comparative analysis of existing reinforced concrete buildings damaged at different levels during past earthquakes using rapid assessment methods

  • Sezer Aynur;Hilal Meydanli Atalay
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.793-808
    • /
    • 2023
  • Türkiye is located in a region where destructive earthquakes are frequently experienced due to its geological characteristics and geographical location. Therefore, considering the possibility of a devastating earthquake at any time, determining the reinforced concrete (RC) building seismic safety, constructed before or after the current seismic buildings code, is one of the most important issues to be completed firstly. For this purpose, rapid assessment methods developed to quickly determine the seismic safety of buildings are available in the literature. Comparison of the principles of Principles of the Determination of Risky Structures-2019, Column and Wall Index Method, P25 Scoring Method and Improved Discriminant Analysis Method, which are among these methods, have been aimed within the scope of this study. Within the scope of this paper, a total of 43 buildings in the Yalova/Çınarcık region of Türkiye that the damage level was determined by street observation method immediately after the 1999 Kocaeli (Izmit) Earthquake; 15 buildings with heavy damage and 28 buildings with moderate damage were examined by rapid assessment methods. Although the risk detection difference was not separated as a clear line in any of the methods used, the results obtained from the rapid assessment methods are evaluated as being compatible with the detected after earthquake structural seismic behavior of the buildings. The PDRS-2019 and column and wall index method gave the most approximate results. In the results obtained from the analyzes; structural features such as number of floors, frame continuity, soft/weak story irregularity, effective shear strength area, existence of heavy overhangs in plan, type of structural system have been found to be significantly effective on the earthquake behavior of buildings.

진동계측자료 기반 안전성평가 시스템을 활용한 건축물의 비틀림 분석 방법 개발 (A Study on the Development of Torsion Analysis Method for Buildings Using Rapid Safety Assessment System Based on Accelerometers)

  • 정성훈;장원석;이정한;박병철
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.275-281
    • /
    • 2021
  • In this study, algorithms for analyzing the torsion of buildings under earthquake excitation are developed. The algorithm and formulations to account for the torsional angle are verified by analyzing the seismic acceleration time history data. The method was applied to the reference buildings to examine their operation and usability. The reference application demonstrated that the noise-canceling scheme successfully overcame various obstacles in the field measurements. The developed method is expected to be used as a tool to support a loss assessment system for determining the direction and priority of disaster response in the event of an earthquake.

근거리지진에서 장주기사장교의 신뢰성평가 (Reliability Assessment of Long-Period Cable-Stayed Bridges on Near Fault Earthquake(NFE))

  • 방명석
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.44-48
    • /
    • 2012
  • The seismic safety of long-period cable-stayed bridges is assessed by probabilistic finite element analysis and reliability analysis under NFE. The structural response of critical members of cable-stayed bridges is evaluated using the developed probabilistic analysis algorithm. In this study, the real earthquake recording(Chi-Chi Earthquake; 1997) was selected as the input NFE earthquake for investigating response characteristics. The probabilistic response and reliability index shows the different aspect comparing the result from FFE earthquake. Therefore, the probabilistic seismic safety assessment on NFE earthquakes should be performed for the exact evaluation of long-period cable-stayed bridges and the earthquake resistant design criteria should be complemented.