• 제목/요약/키워드: seismic retrofit of concrete

검색결과 192건 처리시간 0.026초

Experimental investigation of reinforced concrete columns retrofitted with polyester sheet

  • Chang, Chunho;Kim, Sung Jig;Park, Dongbyung;Choi, Sunghun
    • Earthquakes and Structures
    • /
    • 제6권3호
    • /
    • pp.237-250
    • /
    • 2014
  • This paper experimentally investigates the seismic performance of RC columns retrofitted with Super Reinforcement with Flexibility (SRF), which is a polyester fiber reinforced polymer. A total of three specimens with a scale factor of 1/2 were constructed and tested in order to assess the structural behavior of the retrofitted RC columns. One specimen was a non-seismically designed column without any retrofit, while others were retrofitted with either one or two layers of the polyester belt with urethane as the adhesive. Static cyclic testing with a constant axial load was conducted to assess the seismic performance of the retrofitted RC columns. It is concluded that the SRF retrofitting method increases the strength and ductility of the RC columns and can also impact on the failure mode of the columns.

연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가 (Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes)

  • 신지욱;김준희;이기학
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

지진응답해석에 의한 내진판정 기본지표 (Basic Seismic Protection Index by Seismic Response Analysis)

  • 이원호;이강석;최호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.883-888
    • /
    • 2001
  • In Korea, countermeasures against earthquake disasters such as the seismic performance evaluation and/or retrofit scheme of buildings have not been fully performed since Korea had not been experienced many destructive earthquakes in the past. The main objective of this paper is to propose the basic seismic protection index (Es) suitable to Korean buildings based on the seismic evaluation of existing reinforced concrete buildings using modified strength index. This paper will focus on 1) the selection of weak and moderate earthquake waves representing Korean seismic zone, 2) the creation of the required strength ratio spectra by seismic response analysis, and 3) the proposition of the basic seismic protection index (Es) suitable to Korean seismic activity based on required strength ratio spectra

  • PDF

Steel-Jacket 보강 철근콘크리트 기둥의 변위기반 내진설계 (Displacement Based Seismic Design of Steel jacket Retrofitted Reinforced Concrete Column)

  • 정인규;조창근;박문호;박순응;남유석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.197-198
    • /
    • 2009
  • 본 연구는 기존 철근콘크리트 구조물에 대하여 대표적인 변위-기반 설계법인 Chopra&Goel이 제안한 직접변위-기반 설계법의 기본개념을 적용하여 최대 설계지반 가속도에 대한 보강 Steel Jacket의 두께를 결정하고, 결정된 보강 두께를 적용하여 보강전 후 성능설계기법에 의한 비선형 해석 및 보강 설계법에 의한 보다 개선된 알고리즘 및 프로그램을 개발하는 것이다.

  • PDF

경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석 (Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil)

  • 남상혁;변근주;송하원;박성민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

Assessment of seismic retrofitting for soft-story buildings using gapped inclined brace system

  • Tohamy, Mohamed. A.;Elsayed, Mostafa. M.;Akl, Adel. Y.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.319-330
    • /
    • 2022
  • Retrofit of soft-story buildings due to seismic loads using Gap-Inclined-Brace (GIB) system is considered a new retrofit technique that aims to maintain both strength and stiffness of structure. In addition, it provides more ductility and less P-delta effect, and subsequently better performance is observed. In this paper, the effect of the eccentricity between GIB and the retrofitted column due to installation on the efficiency of the retrofitting system is studied. In addition, a modification in the determination method of GIB properties is introduced to reduce the eccentricity effect. Also, the effect of GIB system on the seismic response of mid-rise buildings with different heights considering soft-story at various heights has been studied. A numerical model is developed to study the impact of such system on the response of retrofitted soft-story buildings under the action of seismic loads. To achieve that goal, this model is used to perform a numerical investigation, by considering five case study scenarios represent several locations of soft-story of two mid-rise reinforced concrete buildings. At first, Non-linear static pushover analysis was carried out to develop the capacity curves for case studies. Then, Non-linear time history analyses using ten earthquake records with five peak ground accelerations is performed for each case study scenario before and after retrofitting with GIB. The results show that large GIB eccentricity reduce the ultimate lateral resistance and deformation capacity of the retrofitting system. Moreover, the higher the retrofitted building, the more deformation capacity is observed but without significant increase in ultimate lateral resistance.

내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가 (Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame)

  • 김선웅;이경구
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

브레이스에서 고인성시멘트 복합체와 강봉으로 구성된 접합요소의 구조성능 (Structural Performance of Connection element composed of High Performance Fiber Reinforced Cementitious composites and Steel Bars in Brace)

  • 이영오;양일승;한병찬;박완신;윤현도;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.231-234
    • /
    • 2005
  • Steel braced frames retrofit method has been broadly used due to their effectiveness in both light weight and construction periods. However, steel braced frames retrofit method has difficulties in application on the inner frames of buildings to be retrofitted consequently, there have been demands for the braced frames retrofit method that can be broadly and easily applicable to both inner and outer frames of the buildings. The objective of this study is to develop and evaluate the seismic retrofit method applicable to the inner frame also by dividing the reinforcing frames into three unit. From the cyclic test of specimens, the test results dearly showed that steel brace using HPFRCCs and steel bars ensure the better cyclic compressive performance than the normal braced members.

  • PDF

주철근 겹침이음된 실물 비내진 원형 교각의 내진성능평가 (Seismic Performance Evaluation of Full-size Non-seismic Circular RC Bridge Piers with Longitudinal Steel Lap splice)

  • 정영수;이대형;고성현;이재훈
    • 콘크리트학회논문집
    • /
    • 제16권5호
    • /
    • pp.697-707
    • /
    • 2004
  • 내진설계편이 제정된 1992년 이전의 설계규정에 따라 설계$\cdot$시공된 교량은 내진상세가 적용되지 않아 지진에 취약할 것으로 예상된다. 특히, 주철근의 겹침이음은 교각의 상당한 내진성능저하를 야기하는 것으로 보고되고있다. 하지만, 이들 교량에 대한 내진성능평가 및 내진보강에 관한 연구는 아직 체계적으로 이루어지지 않고 있는 실정이다. 따라서, 이에 대한 대책마련이 시급한 것으로 사료된다. 본 연구에서는 이러한 비내진 교각의 내진성능을 평가하고자 형상비 4.0인 실물크기의 철근콘크리트 교각시험체를 제작하여 준정적실험을 수행하였다. 실험결과를 통하여 주철근 겹침이음된 비내진교각은 띠철근 형태와 상관없이 현행 도로교설계기준의 요구성능을 만족하지 못하는 것으로 조사되어 시급히 보강을 하여야 할 것으로 판단된다. 또한 주철근 겹침이음에 대한 내진규정의 보완이 요구된다.

고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험 (Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets)

  • 신지욱;전종수
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.