• 제목/요약/키워드: seismic response analysis

검색결과 1,726건 처리시간 0.022초

강사장교의 지진응답특성 및 내진 안전성 평가 (The Earthquake Response Characteristics and Seismic Safety Evaluation of Steel Cable Stayed Bridges)

  • 한성호;신재철;최진우
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.435-454
    • /
    • 2007
  • 본 연구에서는 국내 내진 설계규정에서 고려하고 있지 않은 근거리지진의 특성을 규명하고, 사장교 구조물에 미치는 영향을 검토하고자 한다. 대표적인 근거리 및 원거리지진의 실측자료를 선정한 후, 탄성 및 비탄성응답스펙트럼을 작성하여 지진기록의 특성을 분석하였다. 세 가지 형식의 사장교 및 실제 사장교 구조물을 대상으로 지진특성에 따른 응답해석을 수행하여 주요부재에 대한 응답특성을 비교 분석하였다. 또한 지진응답해석 결과를 이용하여 신뢰성해석을 수행하였으며, 신뢰성지수 및 파괴확률을 검토함으로써 대상 사장교 구조물의 내진 안전성을 정량적으로 평가하였다. 응답스펙트럼, 지진응답해석 및 신뢰성해석 결과에 의하면 근거리지진이 사장교 응답에 대한 영향은 기존의 원거리지진과는 상이한 양상을 보이고 있으므로, 사장교 구조물 설계 시 중요한 인자로 고려해야 할 것을 제시하고자 한다.

Site-response effects on RC buildings isolated by triple concave friction pendulum bearings

  • Ates, Sevket;Yurdakul, Muhammet
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.693-715
    • /
    • 2011
  • The main object of this study is to evaluate the seismic response effects on a reinforced concrete building isolated by triple concave friction pendulum (TCFP) bearings. The site-response effects arise from the difference in the local soil conditions at the support points of the buildings. The local soil conditions are, therefore, considered as soft, medium and firm; separately. The results on the responses of the isolated building are compared with those of the non-isolated. The building model used in the time history analysis, which is a two-dimensional and eight-storey reinforced concrete building with and without the seismic isolation bearings and/or the local soil conditions, is composed of two-dimensional moment resisting frames for superstructure and of plane elements featuring plane-stress for substructure. The TCFP bearings for isolating the building are modelled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. In order to investigate the efficiency of both the seismic isolation bearings and the site-response effects on the buildings, the time history analyses are elaborately conducted. It is noted that the site-response effects are important for the isolated building constructed on soft, medium or firm type local foundation soil. The results of the analysis demonstrate that the site-response has significant effects on the response values of the structure-seismic isolation-foundation soil system.

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

중간층 면진을 적용한 돔 구조물의 하부 구조 높이에 따른 지진 응답 분석 (Seismic Response Analysis According to the Height of Substructure of the Dome Structure Using Mid-Story Isolation System)

  • 최나영;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권4호
    • /
    • pp.27-34
    • /
    • 2019
  • Spatial structure does not have columns and walls installed inside, so they have a large space. There are upper structure and substructure supporting them. The response of seismic loads to the upper structure may be increased or decreased due to the effects of the substructure. Therefore, in this study, the seismic response of the upper structure and the floor response spectrum of the substructure were compared and analyzed according to the height of the substructure in the spatial structure where the LRB was installed. As a result, the possibility of amplification of response was confirmed as seismic waves passed though the substructure, which is likely to increase the response of the upper structures.

다중지점 지진하중을 받는 돔 구조물의 지진응답 제어 (Seismic Response Control of Dome Structure Subjected to Multi-Support Earthquake Excitation)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제14권4호
    • /
    • pp.89-96
    • /
    • 2014
  • Spatial structures as like dome structure have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and effectively control of seismic response of spatial structure subjected to multi-supported excitation. In this study, star dome structure that is subjected to multi-supported excitation was used as an example spatial structure. The response of the star dome structure under multiple support excitation are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. And the application of passive tuned mass damper(TMD) to seismic response control of star dome structures has been investigated. From this numerical analysis, it is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation. And it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure subjected to multi-supported excitation.

응답 스펙트럼의 평균과 분산, 상관관계를 모두 고려한 지반운동 선정 방법 - II 지진 응답 (A Method for Selecting Ground Motions Considering Target Response Spectrum Mean, Variance and Correlation - II Seismic Response)

  • 하성진;한상환
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.63-70
    • /
    • 2016
  • This study is the sequel of a companion paper (I. Algorithm) for assessment of the seismic performance evaluation of structure using ground motions selected by the proposed algorithm. To evaluate the effect of the correlation structures of selected ground motions on the seismic responses of a structure, three sets of ground motions are selected with and without consideration of the correlation structure. Nonlinear response history analyses of a 20-story reinforced concrete frame are conducted using the three sets of ground motions. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.

납삽입 적층고무 및 마찰진자형 면진장치 적용 구조물의 지진응답 해석 (Seismic response analysis of the structures with lead rubber and friction pendulum isolation bearings)

  • 허영철
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.415-423
    • /
    • 2000
  • In this study, a computer program was developed for the seismic response analysis of the structures with base isolation bearings. On a 6-story steel frame structure isolated by lead rubber bearings and friction pendulum bearings, seismic response analyses using the developed program and commercial program and experiments were carried out. The results were compared one another and discussed.

  • PDF

Assessment of pushover-based method to a building with bidirectional setback

  • Fujii, Kenji
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.421-443
    • /
    • 2016
  • When conducting seismic assessment of an asymmetric building, it is essential to carry out three-dimensional analysis considering all the possible directions of seismic input. For this purpose, the author proposed a simplified procedure is to predict the largest peak seismic response of an asymmetric building subjected to horizontal bidirectional ground motion acting in an arbitrary angle of incidence in previous study. This simplified procedure has been applied to torsionally stiff (TS) asymmetric buildings with regular elevation. However, the suitability of this procedure to estimate the peak response of an asymmetric building with vertical irregularity, such as an asymmetric building with setback, has not been assessed. In this article, the pushover-based simplified procedure is applied to estimate the peak response of asymmetric buildings with bidirectional setback. Nonlinear dynamic (time-history) analysis of two six-storey asymmetric buildings with bidirectional setback and designed according to strong-column weak beam concept is carried out considering various directions of seismic input, and the results compared with those estimated by the proposed method. The largest peak displacement estimated by the simplified method agrees well with the envelope of the dynamic analysis response. The suitability assessment of the simplified procedure to analysed building models is made as well based on pushover analysis results.

Direct displacement-based seismic assessment of concrete frames

  • Peng, Chu;Guner, Serhan
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.355-365
    • /
    • 2018
  • Five previously-tested reinforced concrete frames were modelled using a nonlinear finite element analysis procedure to demonstrate the accurate response simulations for seismically-deficient frames through pushover analyses. The load capacities, story drifts, and failure modes were simulated. This procedure accounts for the effects of shear failures and the shear-axial force interaction, and thus is suitable for modeling seismically-deficient frames. It is demonstrated that a comprehensive analysis method with a capability of simulating material constitutive response and significant second-order mechanisms is essential in achieving a satisfactory response simulation. It is further shown that such analysis methods are invaluable in determining the expected seismic response, safety, and failure mode of the frame structures for a performance-based seismic evaluation. In addition, a new computer program was developed to aid researchers and engineers in the direct displacement-based seismic design process by assessing whether a frame structure meets the code-based performance requirements by analyzing the analysis results. As such, the proposed procedure facilitates the performance-based design of new buildings as well as the numerical assessment and retrofit design of existing buildings. A sample frame analysis was presented to demonstrate the application and verification of the approach.

Residual Vector를 이용한 시간이력해석의 잔여모드 응답 고려 방법 (Consideration of residual mode response in time history analysis using residual vector)

  • 변창호;이한걸;김정용
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.137-144
    • /
    • 2021
  • The mode superposition time history analysis method is commonly used in a seismic analysis. The maximum response in the time history analysis can be derived by combining the responses of individual modes. The residual mode response is the response of the modes which are not considered in the time history analysis. In this paper, the residual vector method to consider the residual mode response in the time history analysis is introduced and evaluated. Seismic analyses for a sample structure model and a reactor vessel model are performed to evaluate the residual vector method. The analysis results show that residual mode response is well calculated when the residual vector method is used. It is confirmed that the residual vector method is useful and acceptable to consider the residual mode response in a seismic analysis of the nuclear power plant equipment.