• Title/Summary/Keyword: seismic processing

Search Result 220, Processing Time 0.023 seconds

An Iterative, Interactive and Unified Seismic Velocity Analysis (반복적 대화식 통합 탄성파 속도분석)

  • Suh Sayng-Yong;Chung Bu-Heung;Jang Seong-Hyung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Among the various seismic data processing sequences, the velocity analysis is the most time consuming and man-hour intensive processing steps. For the production seismic data processing, a good velocity analysis tool as well as the high performance computer is required. The tool must give fast and accurate velocity analysis. There are two different approches in the velocity analysis, batch and interactive. In the batch processing, a velocity plot is made at every analysis point. Generally, the plot consisted of a semblance contour, super gather, and a stack pannel. The interpreter chooses the velocity function by analyzing the velocity plot. The technique is highly dependent on the interpreters skill and requires human efforts. As the high speed graphic workstations are becoming more popular, various interactive velocity analysis programs are developed. Although, the programs enabled faster picking of the velocity nodes using mouse, the main improvement of these programs is simply the replacement of the paper plot by the graphic screen. The velocity spectrum is highly sensitive to the presence of the noise, especially the coherent noise often found in the shallow region of the marine seismic data. For the accurate velocity analysis, these noise must be removed before the spectrum is computed. Also, the velocity analysis must be carried out by carefully choosing the location of the analysis point and accuarate computation of the spectrum. The analyzed velocity function must be verified by the mute and stack, and the sequence must be repeated most time. Therefore an iterative, interactive, and unified velocity analysis tool is highly required. An interactive velocity analysis program, xva(X-Window based Velocity Analysis) was invented. The program handles all processes required in the velocity analysis such as composing the super gather, computing the velocity spectrum, NMO correction, mute, and stack. Most of the parameter changes give the final stack via a few mouse clicks thereby enabling the iterative and interactive processing. A simple trace indexing scheme is introduced and a program to nike the index of the Geobit seismic disk file was invented. The index is used to reference the original input, i.e., CDP sort, directly A transformation techinique of the mute function between the T-X domain and NMOC domain is introduced and adopted to the program. The result of the transform is simliar to the remove-NMO technique in suppressing the shallow noise such as direct wave and refracted wave. However, it has two improvements, i.e., no interpolation error and very high speed computing time. By the introduction of the technique, the mute times can be easily designed from the NMOC domain and applied to the super gather in the T-X domain, thereby producing more accurate velocity spectrum interactively. The xva program consists of 28 files, 12,029 lines, 34,990 words and 304,073 characters. The program references Geobit utility libraries and can be installed under Geobit preinstalled environment. The program runs on X-Window/Motif environment. The program menu is designed according to the Motif style guide. A brief usage of the program has been discussed. The program allows fast and accurate seismic velocity analysis, which is necessary computing the AVO (Amplitude Versus Offset) based DHI (Direct Hydrocarn Indicator), and making the high quality seismic sections.

  • PDF

Comparative Study of Microstructure and Tensile Properties of 600 and 700 MPa-Grade High-Strength Seismic Resistant Reinforced Steel Bars (내진용 600 및 700 MPa 급 고강도 철근의 미세조직과 인장 특성 비교)

  • Hong, T.W.;Lee, S.I.;Lee, J.H.;Shim, J.H.;Lee, M.G.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.281-288
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 600 and 700 MPa-grade high-strength seismic reinforced steel bars. High-strength seismic resistant reinforced steel bars (SD 600S and SD 700S) were fabricated by TempCore process, especially the SD 700S specimen was more rapid cooled than the SD 600S specimen during the TempCore process. Although two specimens had microstructure of tempered martensite in the surface region, the SD 600S specimen had ferrite-degenerated pearlite in the center region, whereas the SD 700S specimen had bainite-ferrite-degenerated pearlite in the center region. Therefore, their hardness was highest in the surface region and revealed a tendency to decrease from the surface region to the center region because tempered martensite has higher hardness than ferrite-degenerated pearlite or bainite. The SD 700S specimen revealed higher hardness in the center region than SD 600S specimen because it contained a larger amount of bainite as well as ferrite-degenerated pearlite. On the other hand, tensile test results indicated the SD 600S and SD 700S specimens revealed continuous yielding behavior because of formation of degenerated pearlite or bainite in the center region. The SD 600S specimen had a little higher tensile-to-yield ratio because the presence of ferrite and degenerated pearlite in the center region and the lower fraction of tempered martensite enhance work hardening.

Prestack Reverse Time Migration for Seismic Reflection data in Block 5, Jeju Basin (제주분지 제 5광구 탄성파자료의 중합전 역시간 구조보정)

  • Ko, Chin-Surk;Jang, Seong-Hyung
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • For imaging complex subsurface structures such as salt dome, faults, thrust belt, and folds, seismic prestack reverse-time migration in depth domain is widely used, which is performed by the cross-correlation of shot-domain wavefield extrapolation with receiver-domain wavefield extrapolation. We apply the prestack reverse-time migration, which had been developed at KIGAM, to the seismic field data set of Block 5 in Jeju basin of Korea continental shelf in order to improve subsurface syncline stratigraphy image of the deep structures under the shot point 8km at the surface. We performed basic data processing for improving S/N ratio in the shot gathers, and constructed a velocity model from stack velocity which was calculated by the iterative velocity spectrum. The syncline structure of the stack image appears as disconnected interfaces due to the diffractions, but the result of the prestack migration shows that the syncline image is improved as seismic energy is concentrated on the geological interfaces.

Wavelet Based Matching Pursuit Method for Interpolation of Seismic Trace with Spatial Aliasing (공간적인 알리아싱을 포함한 탄성파 트레이스의 내삽을 위한 요소파 기반의 Matching Pursuit 기법)

  • Choi, Jihun;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • Due to mechanical failure or geographical accessibility, the seismic data can be partially missed. In addition, it can be coarsely sampled such as crossline of the marine streamer data. This seismic data that irregular sampled and spatial aliased may cause problems during seismic data processing. Accurate and efficient interpolation method can solve this problem. Futhermore, interpolation can save the acquisition cost and time by reducing the number of shots and receivers. Among various interpolation methods, the Matching Pursuit method can be applied to any sampling type which is regular or irregular. However, in case of using sinusoidal basis function, this method has a limitation in spatial aliasing. Therefore, in this study, we have developed wavelet based Matching Pursuit method that uses wavelet instead of sinusoidal function for the improvement of dealiasing performance. In addition, we have improved interpolation speed by using inner product instead of L-2 norm.

On-Site Earthquake Early Warning System Design and Performance Evaluation Method (현장 지진조기경보시스템의 설계 및 성능평가 방법)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 2020
  • Recently, in order to improve the performance of the Earthquake Early Warning System (EEWS) and to supplement the effects of earthquake disaster prevention in epicenters or near epicenters, development of on-site EEWS has been attempted. Unlike the national EEWS, which is used for earthquake disaster prevention by using seismic observation networks for earthquake research and observation, on-site EEWS aims at earthquake disaster prevention and therefore requires efficient design and evaluation in terms of performance and cost. At present, Korea lacks the necessary core technologies and operational know-how, including the use of existing EEWS design criteria and evaluation methods for the development of On-Site EEWS as well as EEWS. This study proposes hardware and software design directions and performance evaluation items and methods for seismic data collection, data processing, and analysis for localization of On-Site EEWS based on the seismic accelerometer requirements of the Seismic and Volcanic Disaster Response Act.

An Investigation on the Technical Progress of Test Production for Gas Hydrate Development (가스하이드레이트 시험생산 기술개발 동향)

  • Park, Seoung-Soo;Ju, Woo-Sung;An, Seung-Hee;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.705-708
    • /
    • 2009
  • For the Gas hydrate Research and Development in Korea, the prospect area I & II was surveyed and drilled during the first phase. At the result, we succeeded to discovering gas hydrate real sample at BSR reflection and vent structure. This expedition processing contributes to developing the offshore seismic survey technologies and data processing of Korea. But Korean gas hydrate test production research, in spite of activating test production at other countries, is such a limitation about technician, GH production technologies and E&P processing. First of all, there is no exist in Korea to application site for the their production research results. In this paper, we have studied the gas hydrate reservoir selection technics of the DOE & BPXA for the ANS test production. And this result will helpful to preparation of gas hydrate test production in Korea.

  • PDF

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Fault Detection for Seismic Data Interpretation Based on Machine Learning: Research Trends and Technological Introduction (기계 학습 기반 탄성파 자료 단층 해석: 연구동향 및 기술소개)

  • Choi, Woochang;Lee, Ganghoon;Cho, Sangin;Choi, Byunghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.97-114
    • /
    • 2020
  • Recently, many studies have been actively conducted on the application of machine learning in all branches of science and engineering. Studies applying machine learning are also rapidly increasing in all sectors of seismic exploration, including interpretation, processing, and acquisition. Among them, fault detection is a critical technology in seismic interpretation and also the most suitable area for applying machine learning. In this study, we introduced various machine learning techniques, described techniques suitable for fault detection, and discussed the reasons for their suitability. We collected papers published in renowned international journals and abstracts presented at international conferences, summarized the current status of the research by year and field, and intensively analyzed studies on fault detection using machine learning. Based on the type of input data and machine learning model, fault detection techniques were divided into seismic attribute-, image-, and raw data-based technologies; their pros and cons were also discussed.

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Seismic Data Processing and Inversion for Characterization of CO2 Storage Prospect in Ulleung Basin, East Sea (동해 울릉분지 CO2 저장소 특성 분석을 위한 탄성파 자료처리 및 역산)

  • Lee, Ho Yong;Kim, Min Jun;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.25-39
    • /
    • 2015
  • $CO_2$ geological storage plays an important role in reduction of greenhouse gas emissions, but there is a lack of research for CCS demonstration. To achieve the goal of CCS, storing $CO_2$ safely and permanently in underground geological formations, it is essential to understand the characteristics of them, such as total storage capacity, stability, etc. and establish an injection strategy. We perform the impedance inversion for the seismic data acquired from the Ulleung Basin in 2012. To review the possibility of $CO_2$ storage, we also construct porosity models and extract attributes of the prospects from the seismic data. To improve the quality of seismic data, amplitude preserved processing methods, SWD(Shallow Water Demultiple), SRME(Surface Related Multiple Elimination) and Radon Demultiple, are applied. Three well log data are also analysed, and the log correlations of each well are 0.648, 0.574 and 0.342, respectively. All wells are used in building the low-frequency model to generate more robust initial model. Simultaneous pre-stack inversion is performed on all of the 2D profiles and inverted P-impedance, S-impedance and Vp/Vs ratio are generated from the inversion process. With the porosity profiles generated from the seismic inversion process, the porous and non-porous zones can be identified for the purpose of the $CO_2$ sequestration initiative. More detailed characterization of the geological storage and the simulation of $CO_2$ migration might be an essential for the CCS demonstration.