• 제목/요약/키워드: seismic performances

검색결과 195건 처리시간 0.025초

Earthquake performance of the two approach viaducts of the bosphorus suspension bridge

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Celep, Zekai
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.387-406
    • /
    • 2016
  • The main purpose of this paper is to determine the dynamic characteristics and the structural stability of the two approach viaducts of the Bosphorus Suspension Bridge under the expected stresses that would be caused during earthquake conditions. The Ortakoy and the Beylerbeyi approach viaducts constitute the side spans of the bridge at two locations. The bridge's main span over the Bosphorus is suspended, whereas they are supported at the base at either end. For the numerical investigation of the viaducts, 3-D computational structural finite element-FE models were developed. Their natural frequencies and the corresponding mode shapes were obtained, analyzed, presented and compared. The performances of the viaducts, under earthquake conditions, were studied considering the P-Delta effects implementing the push-over (POA) and the non-linear time-history analyses (NTHA). For the NTHA, three earthquake ground motions were generated depending on the location of the bridge. Seismic performances of the viaducts were determined in accordance with the requirements of the Turkish Seismic Code for the Earthquake Design of Railways Bridges (TSC-R/2008) and those of Caltrans (CALTRANS-2001) given for Seismic Design of Steel Bridges, separately. Furthermore, the investigation was extended for evaluating the possible need for retrofitting in the future. After the analysis of the resultant data, a retrofit recommendation for the viaducts was presented.

Seismic performances of three- and four-sided box culverts: A comparative study

  • Sun, Qiangqiang;Peng, Da;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.49-63
    • /
    • 2020
  • Studying the critical response characteristics of box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this work, a numerical parametric study is conducted on various soil-culvert systems, aiming to highlight the critical difference in the seismic performances between three- and four-sided culverts. Two-dimensional numerical models consider a variety of burial depths, flexibility ratios and foundation widths, assuming a visco-elastic soil condition, which permits to compare with the analytical solutions and previous studies. The results show that flexible three-sided culverts at a shallow depth considerably amplify the spectral acceleration and Arias intensity. Larger racking deformation and rocking rotation are also predicted for the three-sided culverts, but the bottom slab influence decreases with increasing burial depth and foundation width. The bottom slab combined with the burial depth and structural stiffness also significantly influences the magnitude and distribution of the dynamic earth pressure. The findings of this work shed light on the critical role of the bottom slab in the seismic responses of box culverts and may have a certain reference value for the preliminary seismic design using R-F relation.

내부 구속 중공 CFT 기둥의 내진 성능 평가 (Evaluation of Seismic Performance for an Internally Confined Hollow CFT Column)

  • 한택희;김성남;강영종
    • 한국강구조학회 논문집
    • /
    • 제19권1호
    • /
    • pp.53-65
    • /
    • 2007
  • 새로운 형식의 기둥인 내부 구속 중공 콘크리트 충전 튜브 기둥(내부 구속 중공 CFT 기둥, ICH CFT column ; Internally Confined Hollow CFT Column)의 내진 성능 평가 실험을 수행하였다. 준정적 실험을 통하여 2가지 종류의 ICH CFT 기둥과 일반 중실 RC 기둥의 내진 성능을 비교 평가 하였다. 각각의 기둥 시험체에 대해 최대 하중과 변위의 관계를 측정하였으며, 이를 바탕으로 연성도, 소산에너지, 등가 감쇠비, 손상 지수가 계산되었다. 실험 결과 ICH CFT 기둥은 중실 RC 기둥에 비해 약 2배의 모멘트에 저항을 하였으며, 에너지의 흡수와 소산에서도 1.5배 정도의 성능을 보여주어, ICH CFT 기둥이 일반 중실 RC 기둥보다 더 뛰어난 성능을 가짐을 보여주었다.

A displacement-based seismic design method with damage control for RC buildings

  • Ayala, A. Gustavo;Castellanos, Hugo;Lopez, Saul
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.413-434
    • /
    • 2012
  • This paper presents a displacement-based seismic design method with damage control, in which the targets for the considered performance level are set as displacements and a damage distribution is proposed by the designer. The method is based on concepts of basic structural dynamics and of a reference single degree of freedom system associated to the fundamental mode with a bilinear behaviour. Based on the characteristics of this behaviour curve and on the requirements of modal spectral analysis, the stiffness and strength of the structural elements of the structure satisfying the target design displacement are calculated. The formulation of this method is presented together with the formulations of two other existing methods currently considered of practical interest. To illustrate the application of the proposed method, 5 reinforced concrete plane frames: 8, 17 and 25 storey regular, and 8 and 12 storey irregular in elevation. All frames are designed for a seismic demand defined by single earthquake record in order to compare the performances and damage distributions used as design targets with the corresponding results of the nonlinear step by step analyses of the designed structures subjected to the same seismic demand. The performances and damage distributions calculated with these analyses show a good agreement with those postulated as targets.

동흡진기를 사용한 원전 배관계 내진성능 상향에 대한 연구 (A Study on Seismic Performance Improvement of Nuclear Piping System through Dynamic Absorber)

  • 곽신영;곽진성;이환호;오진호;구경회
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, the dynamic absorber and the damper are applied to improve the seismic performance of the piping system, and their quantitative effects on the piping system performance are examined. For this purpose, the response performances of piping system applied with the dynamic absorber/damper are compared with those of the original piping system. Firstly, the frequency response analyses of the piping system with the presence or the absence of dynamic absorber/damper are performed and these results are compared. It has been shown that the maximum acceleration response per the frequency of the piping system is considerably reduced by installing the dynamic absorber and the damper. Secondly, the seismic responses of the piping systems with and without dynamic absorber/damper are compared. As a result of the numerical analyses, it is confirmed that key responses are reduced by 17%-63% due to the installation of the dynamic absorber and damper. Finally, as a result of the seismic performance evaluation, it is confirmed that the HCLPF (High Confidence of Low Probability of Failure) seismic performances are increased by 1.22 to 2.70 times with respect to the failure modes with an aid of the dynamic absorber and damper.

내진 천장시스템의 실규모 진동대 실험 및 해석 (Full-Scale Shaking Table Test and Analysis of Seismic Ceiling Systems)

  • 김호연;최용수;심재일;조창근
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.135-143
    • /
    • 2018
  • In the current research, a seismic ceiling system as one of non-structural elements in buildings has been developed by applying newly designed vertical hanger clips combined with M-bar channel clips. In order to evaluate the seismic performance of the developed system, full-scale shaking table tests of one story frame structure with the conventional ceiling system or the developed seismic ceiling system were performed with time-history responses under earthquake loads. The developed system was also evaluated by the time-history dynamic analysis. From seismic test and analysis, it was shown that the developed seismic ceiling system could give improved seismic performances to minimize displacements and damages of ceiling systems as well as enhance seismic safety of the ceiling system.

특수모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가 (Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections with Special Moment Frame Details)

  • 김선훈;이득행;김용겸;이상원;여운용;박정은
    • 한국지진공학회논문집
    • /
    • 제27권5호
    • /
    • pp.203-211
    • /
    • 2023
  • For fast-built and safe precast concrete (PC) construction, the dry mechanical splicing method is a critical technique that enables a self-sustaining system (SSS) during construction with no temporary support and minimizes onsite jobs. However, due to limited experimental evidence, traditional wet splicing methods are still dominantly adopted in the domestic precast industry. For PC beam-column connections, the current design code requires achieving emulative connection performances and corresponding structural integrity to be comparable with typical reinforced concrete (RC) systems with monolithic connections. To this end, this study conducted the standard material tests on mechanical splices to check their satisfactory performance as the Type 2 mechanical splice specified in the ACI 318 code. Two PC beam-column connection specimens with dry mechanical splices and an RC control specimen as the special moment frame were subsequently fabricated and tested under lateral reversed cyclic loadings. Test results showed that the seismic performances of all the PC specimens were fully comparable to the RC specimen in terms of strength, stiffness, energy dissipation, drift capacity, and failure mode, and their hysteresis responses showed a mitigated pinching effect compared to the control RC specimen. The seismic performances of the PC and RC specimens were evaluated quantitatively based on the ACI 374 report, and it appeared that all the test specimens fully satisfied the seismic performance criteria as a code-compliant special moment frame system.

Seismic performances of centrifugally-formed hollow-core precast columns with multi-interlocking spirals

  • Hwang, Jin-Ha;Lee, Deuck Hang;Oh, Jae Yuel;Choi, Seung-Ho;Kim, Kang Su;Seo, Soo-Yeon
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1259-1274
    • /
    • 2016
  • A precast composite column system has been developed in this study by utilizing multi interlocking spiral steel into a centrifugally-formed hollow-core precast (CHPC) column. The proposed hybrid column system can have enhanced performances in the composite interaction behavior between the hollowed precast column and cast-in-place (CIP) core-filled concrete, the lap splice performance of bundled bars, and the confining effect of concrete. In the experimental program, reversed cyclic loading tests were conducted on a conventional reinforced concrete (RC) column fabricated monolithically, two CHPC columns filled with CIP concrete, and two steel-reinforced concrete (SRC) columns. It was confirmed that the interlocking spirals was very effective to enhance the structural performance of the CHPC column, and all the hollow-core precast column specimens tested in this study showed good seismic performances comparable to the monolithic control specimen.

기둥 항복형 철골라멘의 복원력 특성 (Restoring Force Characteristics of Column Yield Type Steel Rahmen)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제4권2호
    • /
    • pp.44-51
    • /
    • 2004
  • It is generally known in seismic design that the beam yield type frames have more advantages than column yield type of which damage is likely to concentrate to any story. However we may design a building as a beam yield type, it becomes actually a column yield type collapse mode for slab floor diaphragm effect. Considering these points, the column yield type frames are selected and designed as the specimens. The object of this study is to grasp quantitatively the restoring force characteristic values and to estimate the seismic performances of column yield type steel rahmen.

  • PDF

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.