• 제목/요약/키워드: seismic performance state

검색결과 280건 처리시간 0.025초

철근콘크리트 교각의 내진성능에 관한 준정적 실험 (Quasi-Static Tests for seismic performance of RC bridge piers)

  • 이강균;한기훈;정영수;이대형;황의승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.615-620
    • /
    • 1998
  • The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete piers subjected to quasi-static cyclic loads, which have been used in large numbers for railway and urban transportation facilities. Important test parameters are hoop ratio, axial load, loading type, and the behaviors f members have been evaluated through limit states of crack occurrence, yielding and ultimate state of member, ductility and load-deflection loop can be secured by considering the influence of hoop reinforcement ratio and axial load, and that plastic hinge length and ductility ar determined by the combination of the quantities of hoop reinforcement and axial load.

  • PDF

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

압착식 조인트가 적용된 파이프라인 유한요소 해석 (Seismic Performance of Stainless Power Joints Piping System using Finite Element Analysis)

  • 주부석;전법규;남준석;류용희;손호영
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2017년 정기학술대회
    • /
    • pp.145-146
    • /
    • 2017
  • 최근 세계적으로 많은 지진이 발생하고 있으며 기상이변으로 인한 자연재해로 인해 주요 시설물들의 안전성에 관한 관심이 증가하고 있는 추세이다. 특히 비구조 요소의 경우 구조 요소보다 건설 초기 투자비용이 높아 지진이 발생하였을 때 많은 피해가 발생할 가능성이 있으며 비구조 요소의 파괴는 심각한 2차피해로 발전 될 수 있으므로 내진안전성 평가는 반드시 이루어져야 한다고 볼 수 있다. 따라서 본 연구에서는 압착식 조인트의 접촉을 고려한 수계소화설비 파이프라인의 내진성능 평가를 위한 비선형 유한요소 모델을 구축하였다.

  • PDF

비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명 (Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis)

  • 박두희;이태형;김한섭;박정선
    • 한국터널지하공간학회 논문집
    • /
    • 제18권2호
    • /
    • pp.119-128
    • /
    • 2016
  • 성능기반 설계에서 구조물의 안정성은 손상 상태와 이를 수치화한 손상 지수에 의해 평가한다. 지상 구조물에 대해서는 이들이 비교적 명확하게 정의되어 있으나 지중 구조물에 대한 연구 수행 사례는 매우 제한적이다. 본 연구에서는 국내 지하철 시스템에 널리 사용되는 박스형 개착식 터널에 작용하는 지진하중에 의한 손상 상태와 손상 지수를 일련의 비탄성 프레임 해석을 통하여 규명하였다. 터널의 3 단계 손상 상태는 구조물에 발생한 소성 힌지의 수에 의해 정의하였다. 손상 지수는 터널 구조 부재의 탄성 모멘트와 항복 모멘트의 비로 정의하여 탄성 해석만으로도 비탄성 거동과 파괴 메커니즘의 모사가 가능하도록 하였다. 또한 손상 지수를 자유장 전단 변형률의 함수로도 제시하였다. 전단 변형률은 1 차원 지반응답해석으로 쉽게 계산할 수 있으므로 이를 이용하여 간편하게 박스형 터널의 초기 내진 안정성 평가가 가능할 것으로 판단된다. 보다 일반적이고 보편적인 적용성 확보를 위해서는 추후 포괄적인 해석을 수행하여 다양한 형태의 터널과 지반에서의 전단 변형률 분포와 불확실성에 대한 연구가 진행되어야 할 것이다. 본 연구에서 제시된 터널 내진설계를 위한 손상 상태, 손상 지수, 그리고 전단파 속도 및 전단변형률 간의 상호관계 플래트폼은 새로운 아이디어를 담고 있으며 추후 설계에 널리 활용될 수 있을 것으로 판단된다.

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

합성 모듈러 시스템 접합부의 비선형 거동 평가 (Nonlinear Behavior of Composite Modular System's Joints)

  • 최영후;이종일;이호찬;김진구
    • 한국지진공학회논문집
    • /
    • 제25권4호
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

Bayesian 통계법을 활용한 성능기반형 콘크리트 배합설계방법 개발 (Development of PBD Method for Concrete Mix Proportion Design Using Bayesian Probabilistic Method)

  • 김장호;판덕헝;이근성;이나현;김성배
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.171-177
    • /
    • 2010
  • 최근 내구수명기간 동안 요구되는 성능을 만족시키는 차세대 구조설계 연구의 일환으로 PBD 방법에 대한 관심이 증가하고 있다. 성능의 유효여부를 결정하는 방법 중의 하나인 Bayesian 방법은 일반적으로 내진해석 및 설계에서 많이 사용되어왔다. 이 방법은 어느 지진가속도로 인해 발생할 수 있는 구조물의 한계상태(i.e. 붕괴)의 초과확률을 체계적으로 계산할 수 있는 통계방법이다. 이 연구에서는 Bayesian 방법을 활용하여 콘크리트 배합에 대한 강도, 워커빌리티, 탄산화 등과 같은 재료성능의 만족도를 만족 비율로 계산할 수 있는 PBD 개념을 개발하고자 한다. 설계 또는 분석에 사용될 수 있는 Bayesian 방법은 다양한 재료의 특성을 고려하여 만족도 곡선 작성 과정을 설명하고 작성된 만족도 곡선을 사용하는 방법을 제시하고자 한다.

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.