• Title/Summary/Keyword: seismic performance levels

Search Result 234, Processing Time 0.028 seconds

Seismic Response of Multiple Span Prestressed Concrete Girder Bridges in the New Madrid Seismic Zone (New Madrid 지진대의 다경간 PSC 교량의 지진거동)

  • Choi, Eun-Soo;Kim, Hak-Soo;Kim, Kwang-Il;Cho, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.11-23
    • /
    • 2006
  • This paper evaluates the seismic response of multi-span prestressed concrete girder bridges typically found in the New Madrid Seismic Zone region of the central United States. Using detailed nonlinear analytical models and synthetic ground motion records for Memphis, TN, nonlinear response history analyses are performed for two levels of ground motion: 10% probability of exceedance (PE) in 50 years, and 2% probability of exceedance (PE) in 50 years. The results show that the bridge performance is very good fur the 10% PE in 50 years ground motion level. However, the performance for the 2% PE in 50 years ground motion is not so good because it results in highly inelastic behavior of the bridge. Impact between decks results in large ductility demands on the columns, and failure of the bearings that support the girders. It is found that making the superstructure continuous, which is commonly performed for reducing dead load moments and maintenance requirements, results in significant improvement in the seismic response of prestressed concrete girder bridges.

Seismic Performance Improved Design of Reinforced Concrete Columns Strengthened by Steel Jackets Using Displacement-based Design (스틸재킷 보강 철근콘크리트 기둥의 변위기반 내진 성능 개선 설계 방법)

  • Jung, In-Kju;Park, Moon-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • In this study, a procedure of performance-based design for the seismic retrofit of reinforced concrete columns strengthened by steel jackets has been presented. In order to predict the target displacement of retrofitted columns, a nonlinear analysis of reinforced concrete columns retrofitted with steel jackets has been developed based on a segmental model with the fiber cross-sectional approach. The seismic displacement level of retrofitted columns is estimated both by the direct displacement-based design method and by the displacement coefficient method. In examples of seismic retrofitted columns, the current seismic retrofit procedure gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

Evaluation of genetic algorithms for the optimum distribution of viscous dampers in steel frames under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.215-227
    • /
    • 2018
  • Supplemental passive control devices are widely considered as an important tool to mitigate the dynamic response of a building under seismic excitation. Nevertheless, a systematic method for strategically placing dampers in the buildings is not prescribed in building codes and guidelines. Many deterministic and stochastic methods have been proposed by previous researchers to investigate the optimum distribution of the viscous dampers in the steel frames. However, the seismic performances of the retrofitted buildings that are under large earthquake intensity levels or near collapse state have not been evaluated by any seismic research. Recent years, an increasing number of studies utilize genetic algorithms (GA) to explore the complex engineering optimization problems. GA interfaced with nonlinear response history (NRH) analysis is considered as one of the most powerful and popular stochastic methods to deal with the nonlinear optimization problem of damper distribution. In this paper, the effectiveness and the efficiency of GA on optimizing damper distribution are first evaluated by strong ground motions associated with the collapse failure. A practical optimization framework using GA and NRH analysis is proposed for optimizing the distribution of the fluid viscous dampers within the moment resisting frames (MRF) regarding the improvements of large drifts under intensive seismic context. Both a 10-storey and a 20-storey building are involved to explore higher mode effect. A far-fault and a near-fault earthquake environment are also considered for the frames under different seismic intensity levels. To evaluate the improvements obtained from the GA optimization regarding the collapse performance of the buildings, Incremental Dynamic Analysis (IDA) is conducted and comparisons are made between the GA damper distribution and stiffness proportional damping distribution on the collapse probability of the retrofitted frames.

Characterizing the Performance of New Seismic Stations in Southeastern Region, Korea Using Seismic Noise Levels (배경잡음 수준 분석에 의한 동남권 신규 관측소 성능 특성 평가)

  • Shin, Jin Soo;Seong, Yun-Jeong;Son, Minkyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.321-327
    • /
    • 2019
  • We performed seismic noise level analysis to access the proper functioning of 11 newly established seismic stations in the southeastern region of Korea. One-hour long segments of seismograms were selected from the continuous data of the 3 elements for 61 days from March 1, 2019. For each segment of data, the power spectral density (PSD) was estimated from the continuous back ground noise data of the 3 elements for periods ranging from 0.02~100 s. The median noise levels (NLs) of the stations were compared with the new noise model (NNM) of USGS and NLs of station TJN installed in a tunnel on a granite basement. We observed that the NLs of the newly installed seismometers were between the upper and lower limit of the NNM. In a comparison with the noise level of station TJN, the new seismometers had their own noteworthy features. The NLs from accelerometers (Epi-sensors) were ~ 40 dB higher than the NLs from velocimeters (STS-sensors) for periods > 10 s, which is because the small and light Epi-sensors are sensitive to environmental changes. Daily and weekly variations in spectral noise level were observed clearly in short periods < 1 s, and these are considered to be related to human activities. The seismometers in boreholes showed ~20 dB weaker NLs in the cultural noise band. The NLs of accelerometers at a depth of 30 m were also much lower by 30 dB for long periods > 10 sec. Overall the functioning of the new velocimeter and accelerometer stations was reliable for periods ranging from 0.02~100 s and 0.02~10 s, respectively.

Evaluating seismic demands for segmental columns with low energy dissipation capacity

  • Nikbakht, Ehsan;Rashid, Khalim;Mohseni, Iman;Hejazi, Farzad
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1277-1297
    • /
    • 2015
  • Post-tensioned precast segmental bridge columns have shown high level of strength and ductility, and low residual displacement, which makes them suffer minor damage after earthquake loading; however, there is still lack of confidence on their lateral response against severe seismic loading due in part to their low energy dissipation capacity. This study investigates the influence of major design factors such as post-tensioning force level, strands position, columns aspect ratio, steel jacket and mild steel ratio on seismic performance of self-centring segmental bridge columns in terms of lateral strength, residual displacement and lateral peak displacement. Seismic analyses show that increasing the continuous mild steel ratio improves the lateral peak displacement of the self-centring columns at different levels of post-tensioning (PT) forces. Such an increase in steel ratio reduces the residual drift in segmental columns with higher aspect ratio more considerably. Suggestions are proposed for the design of self-centring segmental columns with various aspect ratios at different target drifts.

Direct displacement-based seismic design methodology for the hybrid system of BRBFE and self-centering frame

  • Akbar Nikzad;Alireza Kiani;Seyed Alireza Kazerounian
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.463-480
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBF-Es) exhibit stable cyclic behavior and possess a high energy absorption capacity. Additionally, they offer architectural advantages for incorporating openings, much like Eccentrically Braced Frames (EBFs). However, studies have indicated that significant residual drifts occur in this system when subjected to earthquakes at the Maximum Considered Earthquake (MCE) hazard level. Consequently, in order to mitigate these residual drifts, it is recommended to employ self-centering systems alongside the BRBF-E system. In our current research, we propose the utilization of the Direct Displacement-Based Seismic Design method to determine the design base shear for a hybrid system that combines BRBF with an eccentric configuration and a self-centering frame. Furthermore, we present a methodology for designing the individual components of this composite system. To assess the effectiveness of this design approach, we designed 3-, 6-, and 9-story buildings equipped with the BRBF-E-SCF system and developed finite element models. These models were subjected to two sets of ground motions representing the Maximum Considered Earthquake (MCE) and Design Basis Earthquake (DBE) seismic hazard levels. The results of our study reveal that although the combined system requires a higher amount of steel material compared to the BRBF-E system, it substantially reduces residual drift. Furthermore, the combined system demonstrates satisfactory performance in terms of story drift and ductility demand.

Seismic Performance of Octagonal Flared RC Columns using Oblong Hoops (장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 내진성능)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct. Details of reinforcement for rectangular section require a lot of rectangular hoops and cross-ties. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of the flared column. It can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency. The final objectives of this study are to suggest appropriate oblong hoop details and to provide quantitative reference data and tendency for seismic performance or damage assessment based on the drift levels such as residual deformation, elastic strain energy. This paper describes factors of seismic performance such as ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio and effective stiffness.

Evaluation of the Seismic Safely of Concrete Gravity Dams (콘크리트 중력식 댐의 내진 안전성 평가)

  • 소진호;정영수;김용곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • Recently, the seismic safety evaluation of concrete gravity dams is raised due to the damage or the failure of dams occurred by the 1995 Kobe earthquake, the 1999 Taiwan earthquake, etc. Failre of dam may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about 'earthquake-resistance' or 'seismic safety'of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic safety of concrete gravity dams on the basis of the evaluation method of seismic safety of concrete gravity dams in U.S.A., Japan, Canada, and etc. level 1 is a preliminary evaluation which is for purpose f screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. Finally, level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dam on operation showed good seismic performance under the designed artificial earthquake.

Seismic Performance Evaluation and Retrofit of a 2-Story Steel Building Using a Fragility Contour Method (취약성 등고선을 이용한 비내진 2층 철골조 건축물에 대한 내진성능 평가와 보강)

  • Shin, Ji-Uk;Lee, Ki-Hak;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Based on the Korean Building Standard Law, a building less than 3-stories and $1000m^2$ in area is defined as a small-level building and, as a result, this type of building has been excluded from the requirement to comply with seismic design. In order to prevent the loss of life and property under earthquake loadings, the small-scale building should satisfy the seismic performance specified in the current code through a seismic retrofit. In this study, a seismic retrofit scheme of a Buckling-Restrained Knee Brace (BRKB) was developed for non-seismic 2-story steel buildings, including small-scale buildings, using a fragility contour method. In order to develop an effective retrofit scheme of the BRKB for the building, a total of 75 BRKB analytical models were used to achieve the desired performance levels and analyzed using the fragility contour method. The seismic performance of the retrofitted building was evaluated in terms of the weight of the developed BRKB systems. This study shows that the fragility contour method can be used for rapid evaluation and is an effective tool for structural engineers.

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.