• Title/Summary/Keyword: seismic motions

Search Result 806, Processing Time 0.036 seconds

Dynamic Behavior Analyses of Bridges under Seismic Excitations in 2-Dimensional Directions (이차원 지진성분을 고려한 교량시스템의 지진거동분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.333-340
    • /
    • 2000
  • Dynamic response behaviors of a bridge are examined under seismic excitations in the 2-dimensional directions are examined. A three-dimensional mechanical model is utilized and the corresponding equations of motions are derived to consider the two directional bridge motions due to the randomness residing in the excitation directions. The arbitrary 2-dimensional directions are simulated by applying two independent excitations in the two directions: main direction(longitudinal) ; the additive direction normal to the main (transverse). The rotational superstructure motions due to the spacial motions of the bridge are considered by admitting the deformation of the bearings at supports. The relative displacement to the ground motions and the relative distance between adjacent oscillators are found to be increased by a considerable amount in the case when considering arbitrary directional seismic excitations. It is also found that the piermotions show more complicated behaviors due to the arbitrary seismic directions.

  • PDF

Generation of Seismic Environment and Design Code Compatible Representative Earthquake Motion (지진환경과 설계기준과 호환하는 대표 입력 지진파의 생성)

  • Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.771-776
    • /
    • 2010
  • Since the importance of seismic design is greater, dynamic analysis is more widely using than past. The input motion is one of the most important factors of dynamic analysis. However, in Korea input motions are selected from U.S. and Japan those are captured from large magnitude earthquakes without considering seismic environment or generated in frequency domain. In this research, the methodology for generating input motions those are considered seismic environment and design code is proposed. The seismic environment compatibility is considered by performing deaggregation and the design code compatibility is considered by time-domain artificial time history accelration generation method. The results shows that seismic environment and design code compatible input motions are successfully generated.

  • PDF

Nonlinear Seismic Estimates of Recorded and Simulated Ground Motions Normalized by the Seismic Design Spectrum (설계용 탄성응답스펙트럼으로 규준화된 인공지진동과 기록지진동의 비선형 지진응답)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • In the nonlinear response history analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structural systems. As the properties of the ground motion, using time history analysis, are interrelated with many factors such as the fault mechanism, the seismic wave propagation from source to site, and the amplification characteristics of the soil, it is difficult to properly select the input ground motions for seismic response analysis. In this paper, the most unfavourable real seismic design ground motions were selected as input motions. The artificial earthquake waves were generated according to these earthquake events. The artificial waves have identical phase angles to the recorded earthquake waves, and their overall response spectra are compatible with the seismic design spectrum with 5% of critical viscous damping. It is concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

  • Ali, Ahmer;Abu-Hayah, Nadin;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.825-837
    • /
    • 2017
  • Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions (연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능)

  • Sun, Chang-Ho;An, Sung-Min;Kim, Jung-Han;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.137-144
    • /
    • 2019
  • For the structures near the seismogenic fault, the evaluation of seismic performance against near-fault ground motions is important as well as for design ground motions. In this study, characteristics of seismic behaviors and seismic performance of the pile-bent bridge constructed on the thick soft soil site with various weak soil layers were analyzed. The input ground motions were synthesized by the directivity pulse parameters for intra-plate regions. The ground motion acceleration histories of each layer were obtained by one-dimensional site response analysis. Each soil layer was modeled by equivalent linear springs, and multi-support excitations with different input ground motions at each soil spring were applied for nonlinear seismic analyses. The analysis result by the near-fault ground motions and ground motions matched to design spectra were compared. In case of the near fault ground motion input, the bridge behaved within the elastic range but the location of the maximum moment occurred was different from the result of design ground motion input.

Seismic Fragilities of Bridges and Transmission Towers Considering Recorded Ground Motions in South Korea (한국의 지반거동을 고려한 교량과 송전철탑의 지진취약도 분석)

  • Park, Hyo Sang;Nguyen, Duy-Duan;Lee, Tae-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.435-441
    • /
    • 2016
  • The Korean peninsula has known as a minor-to-moderate seismic region. However, some recent studies had shown that the maximum possible earthquake magnitude in the region is approximately 6.3-6.5. Therefore, a seismic vulnerability assessment of the existing infrastructures considering ground motions in Korea is necessary. In this study, we developed seismic fragility curves for a continuous steel box girder bridge and two typical transmission towers, in which a set of seven artificial and natural ground motions recorded in South Korea is used. A finite element simulation framework, OpenSees, is utilized to perform nonlinear time history analyses of the bridge and a commercial software, SAP2000, is used to perform time history analyses of the transmission towers. The fragility curves based on Korean ground motions were then compared with the fragility curves generated using worldwide ground motions to evaluate the effect of the two ground motion groups on the seismic fragility curves of the structures. The results show that both non-isolated and base-isolated bridges are less vulnerable to the Korean ground motions than to worldwide earthquakes. Similarly to the bridge case, the transmission towers are safer during Korean motions than that under worldwide earthquakes in terms of fragility functions.

Generation of Synthetic Ground Motion in Time Domain (시간영역 인공지진파 생성)

  • Kim, Hyun-Kwan;Park, Du-Hee;Jeong, Chang-Gyun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • The importance of seismic design is greatly emphasized recently in Korea, resulting in an increase in the number of dynamic analysis being performed. One of the most important input parameters for the dynamic seismic analysis is input ground motion. However, it is common practice to use recorded motions from U.S. or Japan without considering the seismic environment of Korea or synthetic motions generated in the frequency domain. The recorded motions are not suitable for the seismic environment of Korea since the variation in the duration and energy with the earthquake magnitude cannot be considered. The artificial motions generated in frequency domain used to generated design response spectrum compatible ground motion has the problem of generating motions that have different frequency characteristics compared to real recordings. In this study, an algorithm that generates target response spectrum compatible ground motions in time domain is used to generate a suite of input ground motions. The generated motions are shown to preserve the non-stationary characteristics of the real ground motion and at the same, almost perfectly match the design response spectrum.

Sensitivity analysis of probabilistic seismic behaviour of wood frame buildings

  • Gu, Jianzhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.109-127
    • /
    • 2016
  • This paper examines the contribution of three sources of uncertainties to probabilistic seismic behaviour of wood frame buildings, including ground motions, intensity and seismic mass. This sensitivity analysis is performed using three methods, including the traditional method based on the conditional distributions of ground motions at given intensity measures, a method using the summation of conditional distributions at given ground motion records, and the Monte Carlo simulation. FEMA P-695 ground motions and its scaling methods are used in the analysis. Two archetype buildings are used in the sensitivity analysis, including a two-storey building and a four-storey building. The results of these analyses indicate that using data-fitting techniques to obtain probability distributions may cause some errors. Linear interpolation combined with data-fitting technique may be employed to improve the accuracy of the calculated exceeding probability. The procedures can be used to quantify the risk of wood frame buildings in seismic events and to calibrate seismic design provisions towards design code improvement.

Component fragility assessment of a long, curved multi-frame bridge: Uniform excitation versus spatially correlated ground motions

  • Jeon, Jong-Su;Shafieezadeh, Abdollah;DesRoches, Reginald
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.633-644
    • /
    • 2018
  • This paper presents the results of an assessment of the seismic fragility of a long, curved multi-frame bridge under multi-support earthquake excitations. To achieve this aim, the numerical model of columns retrofitted with elliptical steel jackets was developed and validated using existing experimental results. A detailed nonlinear numerical model of the bridge that can capture the inelastic response of various components was then created. Using nonlinear time-history analyses for a set of stochastically generated spatially variable ground motions, component demands were derived and then convolved with new capacity-based limit state models to obtain seismic fragility curves. The comparison of failure probabilities obtained from uniform and multi-support excitation analyses revealed that the consideration of spatial variability significantly reduced the median value of fragility curves for most components except for the abutments. This observation indicates that the assumption of uniform motions may considerably underestimate seismic demands. Moreover, the spatial correlation of ground motions resulted in reduced dispersion of demand models that consequently decreased the dispersion of fragility curves for all components. Therefore, the spatial variability of ground motions needs to be considered for reliable assessment of the seismic performance of long multi-frame bridge structures.