• Title/Summary/Keyword: seismic method

Search Result 2,741, Processing Time 0.03 seconds

The Evaluation of Seismic Performance on the Concrete Dam of Analysis Method (해석방법에 따른 콘크리트댐의 내진성능평가)

  • 임정열;이종욱;오병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • The seismic design of the domestic concrete dams has done by seismic coefficient method considering inertia force, but this method has defect not reflect dynamic properties, as a conservative design method. Therefore, it is necessary for seismic design of dam to consider dynamic properties. Also, concrete dam evaluation of seismic performance has done by seismic coefficient method - in fact, it may done by dynamic analysis - that has many problems when applied to the domestic criteria. This study make a comparative analysis for result from seismic design and evaluation of seismic performance by seismic coefficient method, modified seismic coefficient method, and dynamic analysis method.

Slope Stability Analysis Using Modified Seismic Intensity Method During Earthquake (수정진도법에 의한 지진시의 사면안정해석에 관하여)

  • 오병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.124-131
    • /
    • 2000
  • Numerical analysis of slop stability is carried out using seismic intensity, modified seismic intensity, and response seismic coefficient methods. It is found by comparing each of method that minimum safety factor precedes the required safety factor. It is also proved during analysis that most conservative method is the earthquake response analysis method, next is the response seismic coefficient method, and last one is the seismic intensity method. Usually, seismic intensity method is applied in analysis of slop stability. However, in view of safety factor, modified seismic intensity method is more conservative than seismic intensity method. Also modified seismic intensity method is appropriate when height of structure analyzed is high enough.

  • PDF

Development of the Modified Seismic Coefficient Method to Establish Seismic Design Criteria of Buried Box Structures. (BOX 형 지하구조물의 내진설계 기준 확립을 위한 해석기법개발)

  • 박성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.194-201
    • /
    • 2000
  • In this study the modified seismic coefficient method for seismic analysis of buried box structures is developed for practical purpose. The loading coefficient in the modified seismic coefficient method is determined from the results of the response displacement analysis. In the developed method adequate velocity response spectrum in accordance with soil condition is also needed to seismic design of buried box structures, In order to investigate applicability of the modified seismic coefficient method various analyses are performed with different parameters such as depth of base rock height and width of box buried depth and value of standard penetration test. Results from the modified seismic coefficient method are compared with those of the response displacement method in terms of the maximum bending moment and the location of it. From the comparison it is shown that the feasibility of the modified seismic coefficient method for seismic analysis of buried box structures.

  • PDF

Numerical Analysis for Buried Box Structures during Earthquake (지중 박스구조물의 지진시 거동 해석)

  • 박성진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.108-115
    • /
    • 2000
  • Numerical analysis of slop stability is presented using seismic displacement, response seismic coefficient, and earthquake response analysis methods. In seismic displacement and response seismic coefficient methods, horizontal static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis Hahinoha-wave is applied, It is found from result that analysis using response seismic coefficient method is much more conservative than that using seismic displacement method Also, analysis result using earthquake response analysis method is somewhat less conservative about 25% when compared with that using seismic displacement method.

  • PDF

Compare Seismic Coefficient Method and Seismic Response Analysis for Slope during Earthquake (지진시 사면안정해석에 있어서의 진도법과 지진응답해석의 결과 비교)

  • 박성진;오병현;박춘식;황성춘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Numerical analysis of slope stability is presented using slice method, static seismic analysis methods, and earthquake response analysis methods. Static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis, Hachinohe-wave is applied. Safety factor calculated using slice method for failure surface. Calculating methods are Bishop's method and Janhu's method. Static seismic analysis was applied using Mhor-Coulomb model and earthquake response analysis was applied using non-linear elastic model.

  • PDF

The Study of detailng for concrete reinforcement and Seismic Analysis Method for Underground Reinforced Concrete Box Structures (지하 철근 콘크리트 박스 구조물의 내진해석방법 및 철근 배근 상세에 관한 연구)

  • Lee, Myoung-Soo;Han, Sang-Chel
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1215-1222
    • /
    • 2005
  • The object of this thesis is an study on detailing for concrete reinforcement and analytical study for seismic behavior of underground reinforced concrete box structures using the established seismic analytical method. Using the established seismic analytical method that has been presented in various documents seismic behavior of buried reinforce concrete box structures is compared. From the comparsion, it is shown that feasibility and detailing detailng for concrete reinforcement and seismic method for seismic analysis of buried reinforced concrete box structures.

  • PDF

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.

Seismic Damage Analysis of Large Steel Structures (대형강구조물의 지진손상도 해석)

  • 송종걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.199-206
    • /
    • 1997
  • Under sever earthquake, structural elements or structures may sustain a large number of inelastic excursions. To predict seismic damage of the structures with accuracy, much research for general definition of structural collapse and seismic damage analysis is required. The ductility method, the energy method and Park and Ang method for seismic damage analysis of structural elements and structures are compared in this paper. Also, the seismic damage analysis for system-level of structure is carried out using the ESDOF-system method and Powell method. To compare tendency of the seismic damage analysis using each methods, example analysis is accomplished for several cases of different structures and different earthquake excitation.

  • PDF

Evaluation of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Buried Structures (지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구)

  • 김동수;김동수;유제남
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.129-139
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of buried structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by direct integrating the ground-surface acceleration response spectrum of soil type $S_{A}$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.n.

  • PDF

Conceptual Application Schemes of Seismic Isolation Techniques to Hanok (한옥의 면진기법 적용 방안에 대한 개념적 고찰)

  • Park, Bum-Soo;Kim, Yeong-Min;Hur, Moo-Won;Lee, Sang-Hyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.137-146
    • /
    • 2020
  • In this study, various application schemes of seismic isolation system which can be applied to Hanok have been studied by analyzing its structural characteristics under seismic load. Structural stability of Hanok is more required against seismic load as Hanok becomes long-spanned and multi-storied. To meet this goal, it becomes necessary to study more advanced technology such as seismic isolation design as well as seismic control design and seismic resistant design suitable to Hanok. Seismic isolation systems have been successfully applied to RC and steel structures to improve structural performance during earthquakes. Based on these previous study, we proposed four application schemes of seismic isolation design suitable for Hanok and analyzed their structural characteristics and applicability to Hanok in conceptual level based on its structural characteristics. The proposed four schemes are base isolation method, ground isolation method, roof isolation method and intermediate-story isolation method. The applicability of the proposed method was evaluated by performing boundary nonlinear dynamic analysis to the typical Hanok for the two types of isolation method, that is, ground isolation method and roof isolation method, and the results showed that the proposed methods produced good performance enough to be applied to Hanok.