• 제목/요약/키워드: seismic loss

검색결과 197건 처리시간 0.031초

Proposal and Implementation of Emergency Response System of Gas Shut-off in Earthquake (지진시 도시가스 공급정지를 위한 긴급대응시스템의 제안 및 적용)

  • Jung, Hyo-Soon;Kim, Ick-Hyun;Lee, Jong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제12권6호
    • /
    • pp.25-33
    • /
    • 2008
  • Fires that result from the excessive leakage of gas due to earthquakes cause enormous loss of property as well as numerous human casualties. To prevent such disasters, an emergency gas shut-off system is considered to be one of the effective and rational methods. Considering the seismicity, the earthquake frequency and the gas-supply system of Korea, mass gas shut-off by a gas company is determined to be more cost-effective than individual gas shut-off by customers. In this study, an emergency response system was proposed that would shut off the gas supply immediately. Two different reference seismicities were proposed, to specify rapid response according to the measured seismicity. The gas supply area was divided into several gas shut-off blocks in order to facilitate the shut-off of gas supply in damaged blocks. This proposed system was implemented in the actual gas supply area with reference seismicities on the basis of seismic damage analysis.

Comparison of Allowable Axial Stress Provisions of Cylindrical Liquid Storage Tanks under Seismic Excitation (지진 하중을 받는 원통형 플랜트 탱크 구조물의 축방향 허용압축응력 설계기준 비교 연구)

  • Oh, Chang Kook;Lee, So Ri;Park, Jang Ho;Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • 제28권4호
    • /
    • pp.293-301
    • /
    • 2016
  • Stability of cylindrical liquid storage tanks under seismic excitation could prevent catastrophic disaster of human life and economic loss. Domestic provisions on allowable compressive stress in tank walls to prohibit buckling failure are either incomplete or inconsistent, so foreign specifications such as API 650, BS EN 1998-4:2006 or New Zealand Standards are employed in stability design. In this study, response spectrum analyses are performed for plant tanks having different ratios of height to diameter or diameter to thickness to calculate hydrodynamic pressure on tank walls. Then nonlinear buckling analyses are conducted to estimate magnitude of buckling stress. By comparing analysis results with those from foreign design specifications, appropriate domestic design provisions are suggested.

Seismic Wave Attenuation in the Southern Korean Peninsula: Separation of Intrinsic and Scattering Attenuations (한반도 남부에서의 지진파 감쇠: 고유감쇠와 산란감쇠의 분리)

  • Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • 제30권1호
    • /
    • pp.40-48
    • /
    • 2009
  • The attenuation mechanism of seismic waves in the crust is controlled both by intrinsic absorption and scattering of energy. The amount of scattering and intrinsic energy losses from the total attenuation is separately estimated in this study for the southern Korean Peninsula. The formula to be deduced from the theoretical relationship between single back-scattered coda Q and multiple scattering theory was used to separate the total attenuation into the intrinsic Q and the scattering Q. It was found that the intrinsic Q was considerably lower than that of the scattering Q in the frequency range of 1.5 to 20 Hz. This fact implies that the energy loss caused by the intrinsic absorption is relatively larger than one by the scattering effect within the crust of the southern Korean Peninsula. Both intrinsic and scattering Q values appeared to be comparatively larger than those measured in other seismically active regions except for intrinsic Q in the frequency range of 1.5 to 3 Hz.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

Analysis on the Characteristics of the Landslide in Maeri (III) - With a Special Reference on Slope Stability Analysis - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (III) - 사면(斜面)의 안정해석(安定解析)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak;Youn, Ho-Jung
    • Journal of Korean Society of Forest Science
    • /
    • 제94권6호
    • /
    • pp.377-386
    • /
    • 2005
  • This study was carried out to analyse the landslide characteristics by ground investigation, borehole image processing system, field seismic test, laboratory test and ground stability analysis at the landsliding area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. Region I needs to install data logger system to monitor a land displacement during the heavy rainfall events because the region can be liable to occur the land slide by land creeping. It is needed to restore rapidly, if the land displacement occurs in Region I. Region II needs to monitor and repair because of the possibility of slope failure by long-term soil loss. Region III needs constructions to remove ground runoff and ground water to be infiltrated from talus. Region IV where is a stable region, needs to be protected from land cutting or other man-made damage.

Seismic Performance of Transportation Networks (지진으로 인한 교통망 피해추정 기법)

  • Kim, Sang-Hoon;Massanobu, Shinozuka;Kim, Jong-In
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제8권3호
    • /
    • pp.43-52
    • /
    • 2004
  • This paper describes a method of evaluating seismic system performance of highway transportation network in California. The basic element that plays a crucial role in this study is the fragility information of highway bridges in Caltrans' (California Department of Transportation) freeway network. The bridge fragility information is expressed as a function of the ground motion intensity, such as peak ground acceleration (PGA) or peak ground velocity (PGV). Network damage was evaluated under the 1994 Northridge earthquake and scenario earthquakes. A probabilistic model was developed to determine the effect of repair of bridge damage on the improvement of the network performance as days passed after the event. As an example, the system performance degradation measured in terms of an index, “Drivers Delay”, is calculated for the Los Angeles area transportation system, and losses due to Drivers Delay with and without retrofit were estimated.

Attenuation Relations in HAZUS for Earthquake Loss Estimations in Korea (한반도 지진재해예측을 위한 HAZUS의 강진동 감쇠식 비교연구)

  • Kang, Su-Young;Suk, Bong-Chool;Yoo, Hai-Soo;Kim, Kwang-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제11권6호
    • /
    • pp.15-21
    • /
    • 2007
  • Strong motion attenuation relationship represents a comprehensive trend of ground shakings at sites with distances from the source, geology, local soil conditions, and others. It is necessary to develop an attenuation relationship with careful considerations of characteristics of the target area for reliable seismic hazard/risk assessments. In the study, observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. In the meantime, a few strong ground motion attenuation relationships are proposed and introduced in HAZUS, which have been designed for the Western United States and the Central and Eastern United States. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Results of the study will increase the reliability of seismic hazard/risk assessments using HAZUS in the Korean Peninsula.

Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge (지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Choi, Kang-Min;Lee, Jong-Heon;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.

A Study of the Improvement Plan and Real Condition Estimation of Fire Protection Safety Management for Power Plants in Korea (국내발전소 소방안전관리 운영실태조사 및 개선방안에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • 제31권2호
    • /
    • pp.61-73
    • /
    • 2017
  • The Fukushima Nuclear Disaster in 2011 and California Power Failure in 2001 are examples of the importance of the power plant safety management that caused huge national loss with a power-related mass casualty incident. In a situation where humans cannot live without electricity, efforts to strengthen the systematic firefighting safety management in power plants that produce electricity with large amounts of hazardous materials as fuel, such as nuclear energy, coal and gas, are essential to protect life and prevent property loss and stable economic growth from fire explosion accident or radiation leak due to the negligence of safety management and natural disasters such as earthquakes, which has recently become an issue. This study examined the operating situation of firefighting safety management in power plants with firefighting officials employed by five power generation companies including Korea Southern Power Co., Ltd. and Korea Hydro & Nuclear Power Co. Ltd., which are in charge of the domestic power supply. As a result, for the systematic firefighting safety management of power plants, improvement plans were drawn, including the development of an effective business manual and a comprehensive management system, the substantiality of firefighting safety education, and the strengthening of seismic designs to prepare for earthquakes.