• Title/Summary/Keyword: seismic lood

Search Result 3, Processing Time 0.016 seconds

Seismic Design and Analysis of Seismically Isolated KALIMER Reactor Structures (면진된 KALIMER 원자로 구조물의 내진설계 및 지진해석)

  • 이형연
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.75-92
    • /
    • 1999
  • In this paper, the seismic analysis model for seismically isolated KALIMER reactor structures is developed and the modal analysis and the seismic time history analysis are carried out for seismic isolation and non-isolation cases. To check the seismic stress limit according to the ASME Code, the equivalent seismic stress analyses are preformed using the 3-D finite element model. From the seismic stress analysis, the seismic margins are calculated for structural members. The limit of seismic load is defined to show that the maximum input acceleration ensures the structural safety for seismic load. In comparison of seismic responses between seismic isolation and non-isolation cases, the seismic isolation design gives significantly reduced acceleration responses and relative displacements between structures. The seismic margin of KALIMER reactor structure is high enough to produce the limit seismic load 0.8g.

  • PDF

Vertical Distribution of Seismic Load Considering Dynamic Characteristics of Based Isolated Building Structures (면진건축물의 동적특성을 고려한 층지진하중 분배식의 제안)

  • 이동근;홍장미
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • In this study, the validity of the currently used seismic regulations for seismic isolated building structures is investigated, and a new formula for vertical distribution of seismic load is proposed. The distribution formula in UBC-91 did not provide sufficient safety, and thus revised in 1994. However it is pointed out that the revised formula overestimates the seismic load because of its similarity to that of the fixed-base structure. Therefore, in the proposed approach, it is intended to satisfy safety, economy, and applicability by combining the mode shapes of the seismic isolated structure idealized as two degrees of freedom system and those of fixed-base structure. For verification of the proposed formula, both a moment resisting frame and a shear wall system are analyzed. The results obtained from the proposed method turn out to be close to the results from a dynamic analysis.

  • PDF

An Evaluation for Vertical Structural Members Compensated during Design Process and These Compensated during Construction of High-rise Building under Seismic Load (설계 및 시공과정에 보정된 고층건물 구조재의 지진하중에 의한 영향 평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.93-102
    • /
    • 1999
  • Increased height of buildings causes severe shortening of vertical structural members due to the accumulated axial load. It not only decreases the serviceability of a structure but also affects significantly the stability of a structure itself due to the secondary stress. The main purpose of estimating the shortening of vertical structural members is to compensate the differential shortening of adjacent members. This paper presents the comparison of stresses between the vertical structural members compensated during construction process and these compensated during design process under the seismic load and represents that the precise compensation of vertical structural members is important.

  • PDF