• Title/Summary/Keyword: seismic loadings

Search Result 154, Processing Time 0.029 seconds

Dynamic Shear Strength of Stirrup-reinforced Cast-in Anchors by Seismic Qualification Tests (스터럽 보강 선설치 앵커의 지진모의실험에 의한 동적 전단 저항강도 평가)

  • Kim, Tae Hyung;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • An experimental study was conducted to evaluate the breakout strength of stirrup-reinforced cast-in anchors under dynamic shear loadings. The shear loadings were applied in the manner specified in the ACI 355.2 and ETAG 001 for the seismic qualification tests. Test specimens were fabricated with M36 anchor (edge distance, 180mm) reinforced with D10 stirrups (spacing, 100mm). The specimens reached almost the breakout strength and thereafter fracture of anchor occurred. Additional tests with M42 anchor (edge distance, 160mm) reinforced with D6 bars (spacing, 100mm) were also conducted. The experimental results showed that the dynamic shear strength was not less than the static resistance. Based on the test results, it was shown that ACI 318 and ETAG 001 specifications estimate the breakout strength of stirrup-reinforced anchors conservatively as more reinforcement is provided.

Strain Analysis of Longitudinal Reinforcing Steels of RC Bridge Piers Under Shaking Test (진동대 실험에 의한 RC교각의 주철근 변형률 분석)

  • Hong, Hyun-Ki;Yang, Dong-Wook;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.93-96
    • /
    • 2008
  • The near fault ground motion(NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Turkey Izmit (1999), Japan Kobe(1995), Northridge(1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far fault ground motion(FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on RC bridge piers without lap-spliced longitudinal reinforcing steels. The seismic performance of two RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, Two of four identical RC bridge piers were tested under a quasi-static load, and the others were under a pseudo-dynamic load. The respectively two RC bridge pier is comparatively subjected to Pseudo-dynamic loadings and Quasi-Static loadings. This paper indicated that more gives bigger ultimate strain of longitudinal steels to be fractured at bigger PGA motion.

  • PDF

Structural Performance Evaluation of VES Damper System subjected to Cyclic Loadings(CST30) (가력하중을 통한 CST30제진댐퍼시스템의 구조성능 평가)

  • Kim, DaeHun;Lee, DongKyu;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.61-68
    • /
    • 2015
  • The performance enhancement of various structural building systems from natural hazards has become an inctreasingly important issue in engineering field. In this paper, visco-elastic(VE) CST30 damping systems were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. Main test variables are relative shear stiffness, rate of loading frequency, and thickness of specimens to evaluate the seismic capacity based on the performance criteria. This experiment was performed using a total of 12 specimens, subjected to cyclic loadings up to a shear deformation of 500%. All the CST30 dampers provided a ductile and stable hysterestic behavior when subjected to the demands of large shear stiffness and different loading frequencies. The test results showed that the CST30 dampers are an effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings.

Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Kim, Sung-Wan;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF

Nonlinear Seismic Analysis of a Three-dimensional Unsymmetrical Reinforced Concrete Structure (3차원 비대칭 철근콘크리트 구조물의 비선형 지진응답해석)

  • Lim, Hyun-Kyu;Lee, Young-Geun;Kang, Jun Won;Chi, Ho-Seok;Cho, Ho-Hyun;Kim, Moon-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper presents the seismic performance of a geometrically unsymmetrical reinforced concrete building considering torsional effect and material nonlinearity of concrete and steel. The reinforced concrete building is a structure for seismic performance evaluation in the SMART-2013 international benchmark program. Nonlinear constitutive models for concrete and steel were constructed, and their numerical performance was demonstrated by various local tests. Modal analysis showed that the first three natural frequencies and mode shapes were close to the experimental results from the SMART-2013 program. In the time history analysis for low-intensity seismic loadings, displacement and acceleration responses at sampling points were similar to the experimental results. In the end, nonlinear time history analysis was conducted for Northridge earthquake to predict the behavior of the reinforced concrete structure under high-intensity seismic loadings.

Hysteretic Behavior of Composite Beam Detail with Slit around Column (기둥 주위에 슬리트를 갖는 합성보 접합부의 반복하중 하에서의 거동)

  • Yang Il-Seung;Yun Hyun-Do;Lee Kang-Min;Park Wan-Shin;Han Byung-Chan;Moon Yeon-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.101-104
    • /
    • 2004
  • Composite beams are generally known to possess higher flexural stiffness and strength under the positive bending moments than the normal steel beams. However the these beams also exhibit large differences in flexural stiffness and strength when both positive and negative bending moments are applied. As observed during the 1995 Kobe Earthquake, these beams tend to be fractured on the bottom flanges under repeated cyclic loadings. The objective of this study is to develop and evaluate the composite beam detail, which is able to effectively resist the seismic loadings. The proposed system is composed of the slit on concrete slab around column. A limited experimental program was designed and conducted to investigate the hysteretic behavior of the proposed composite beam system. From the experimental data obtained from the testing of three specimens, the proposed composite beam detail is found to possess large beam rotation than normal steel beams.

  • PDF

Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements (무한요소를 사용한 지반-구조물 상호작용계의 시간 영역 지진응답해석)

  • 김두기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.107-112
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far-field soil. The dynamic stiffness matrices of the far-field region formulated in frequency domain using the present method can be easily transformed into the corresponding matrices in time domain. Hence the response can be analytical computed in time domain. Example analysis has been carried out to verify the present method for an embedded block in a multi-layered half-space. The present methods can be easily extended to the nonlinear analysis since the response analysis is carried out in time domain.

  • PDF

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

Seismic Evaluation of Structural Integrity of Main Cooling-Water Pump by Response Spectrum Analysis (응답스펙트럼법을 이용한 지진하중을 받는 원전용 주냉각수펌프의 내진 건전성 평가)

  • Chung, Chul-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1773-1778
    • /
    • 2010
  • To evaluate the structural integrity of the main cooling-water pump of a nuclear power plant under different seismic conditions, the seismic analysis was performed in accordance with IEEE-STD-344 code. The finite element computer program, ANSYS, was used to perform both mode frequency analysis and response spectrum analysis for the pump assembly. The natural frequencies, the mode shapes, and the mode participation factors were obtained from the results of the mode frequency analysis. The stresses resulting from various loadings and their combinations were within the allowable limits specified in the above-mentioned IEEE code. The results of the seismic evaluation fully satisfied the structural acceptance criteria of the IEEE code. Thus, it was proved that the structural integrity of the pump assembly was satisfactory.

Experimental Capacity of Suspended Piping Trapeze Restraint Installations under Cyclic Loadings (반복하중을 받는 경량 배관 서포트 시스템에 대한 실험적 성능 평가)

  • Jeong, Sang-Deock;Oh, Chang-Soo;Park, Min Jae;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.79-86
    • /
    • 2023
  • Damage to gas and fire protection piping systems can lead to secondary disasters after an earthquake, so their seismic design is crucial. Accordingly, various types of seismic restraint installations are being devised, and a new suspended piping trapeze restraint installation has also recently been developed in Korea. In this study, a cyclic loading test was performed on the developed trapeze support system, and its performance was evaluated according to ASHRAE 171, the standard for seismic and wind restraint design established by the American Society of Refrigeration and Air Conditioning Engineers (ASHRAE). The three support system specimens did not break or fracture, causing only insignificant deformations until the end of the experiment. Based on the experimentally rated strength and displacement performance, this trapeze support system is expected to control the seismic movement of piping during an earthquake.