• 제목/요약/키워드: seismic level

검색결과 835건 처리시간 0.024초

중약진 지역에서의 내진설계 개념의 발전동향 (Progress in Seismic Design Concept in Moderate Seismicity Regions)

  • 장승필;김재관
    • 도로교통
    • /
    • 통권76호
    • /
    • pp.2-7
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk, ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Eastern America, China, Australia, Thailand and Hong Kong will be introduced. The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

중약진 지역에서의 내진설계 개념의 발전동향 (Progress in Seismic Design Concept in Moderate Seismicity regions)

  • 장승필
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.217-222
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Easterm America China Australia Thailand and Hong Kong will be introduced, . The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

  • PDF

콘크리트 중력식 댐의 내진 안전성 평가 (Evaluation of the Seismic Safely of Concrete Gravity Dams)

  • 소진호;정영수;김용곤
    • 한국지진공학회논문집
    • /
    • 제6권1호
    • /
    • pp.33-41
    • /
    • 2002
  • 최근 1995년 일본의 고베 및 1999년도에 터키와 대만 등지에서 일어난 강진으로 많은 사상자와 피해가 발생되었고 일본 및 대만의 경우 일부 댐의 피해가 발생되었다. 댐의 경우 지진 발생시 국부적인 구조물의 손상뿐만 아니라 주변 주거지역에 많은 인명피해를 유발하기 때문에 국내에서도 내진설계기준 강화 이전의 콘크리트 중력식 댐에 대한 내진 안전성 평가의 필요성을 인식하게 되었다. 본 연구에서는 미국, 일본 및 캐나다의 내진설계기준 및 안전성 평가기법을 분석하여 국내 실정에 적합한 내진 안전성 평가 지침을 마련하였다. 평가단계는 제3단계로 구성하였다. 제1단계는 기초 문헌자료를 이용한 내진 안전성 평가 필요여부를 구분하는 예비평가단계이며 제2단계 평가는 진도법을 적용한 유사정적해석을 수행하여 성능기준 만족여부를 판단한다. 제3단계 평가는 제2단계를 만족하지 못하였을 경우 대상구조물에 동적해석을 적용하여 정밀한 평가를 수행한 후 성능기준을 평가한다. 본 연구에서는 현재 국내에서 운영중인 콘크리트 중력식 댐을 선정하여 본 평가 방법을 적용하였다.

Evaluation of seismic reliability and multi level response reduction factor (R factor) for eccentric braced frames with vertical links

  • Mohsenian, Vahid;Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.537-549
    • /
    • 2018
  • Using vertical links in eccentric braced frames is one of the best passive structural control approaches due to its effectiveness and practicality advantages. However, in spite of the subject importance there are limited studies which evaluate the seismic reliability and response reduction factor (R-factor) in this system. Therefore, the present study has been conducted to improve the current understanding about failure mechanism in the structural systems equipped with vertical links. For this purpose, following definition of demand and capacity response reduction factors, these parameters are computed for three different buildings (4, 8 and 12 stories) equipped with this system. In this regards, pushover and incremental dynamic analysis have been employed, and seismic reliability as well as multi-level response reduction factor according to the seismic demand and capacity of the frames have been derived. Based on the results, this system demonstrates high ductility and seismic energy dissipation capacity, and using the response reduction factor as high as 8 also provides acceptable reliability for the frame in the moderate and high earthquake intensities. This system can be used in original buildings as lateral load resisting system in addition to seismic rehabilitation of the existing buildings.

포스트텐션 조립식 교각의 유효프리스트레스 크기 결정 (Determination of Effective Prestress of Post-tensioned Precast Bridge Piers)

  • 심창수;코엠찬다라
    • 한국지진공학회논문집
    • /
    • 제20권3호
    • /
    • pp.135-143
    • /
    • 2016
  • In this paper, a design concept of post-tensioned precast bridge piers was proposed to improve seismic behavior of the bridge pier. Mild reinforcing bars are placed continuously along the height of the column. Prestressing tendons are also provided to obtain re-centering capability for seismic events. Arrangement of the axial steels to prevent buckling of rebars at plastic hinge region was suggested and enhanced seismic performance was verified by experiments. Moment-curvature analyses were performed to evaluate the effect of effective prestress on seismic behavior after verifying the calculation method by cyclic tests of the precast columns. A real bridge pier was designed to investigate the seismic performance according to different level of effective prestress. Level of effective prestress showed obvious effect on crushing displacement but negligible effect on lateral displacement at fracture of tendons and reinforcements.

설계스펙트럼의 개정에 따른 철근콘크리트 보통모멘트골조의 내진성능수준 평가 (Performance-Based Evaluation of Seismic Design Proposals for RC Ordinary Moment Frames by Spectrum Revision)

  • 심정은;최인섭;김준희
    • 한국지진공학회논문집
    • /
    • 제26권5호
    • /
    • pp.211-217
    • /
    • 2022
  • New buildings have been designed using different seismic design standards that have been revised. However, the seismic performance of existing buildings is evaluated through the same performance evaluation guidelines. Existing buildings may not satisfy the performance targets suggested in the current guidelines, but there are practical limitations to discriminating the existing buildings with poor seismic performance through a full investigation. In this regard, to classify buildings with poor seismic performance according to the applied standard, this study aimed to evaluate performance-based investigation of the seismic design proposals of buildings with different design standards. The target buildings were set as RC ordinary moment frames for office occupancy. Changes in seismic design criteria by period were analyzed, and the design spectrum changes of reinforced concrete ordinary moment resisting frames were compared to analyze the seismic load acting on the building during design. The seismic design plan was derived through structural analysis of the target model, compared the member force and cross-sectional performance, and a preliminary evaluation of the seismic performance was performed to analyze the performance level through DCR. As a result of the seismic performance analysis through the derived design, the reinforced concrete ordinary moment frame design based on AIK 2000 has an insufficient seismic performance level, so buildings built before 2005 are likely to need seismic reinforcement.

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.

대형강구조물의 지진손상도 해석 (Seismic Damage Analysis of Large Steel Structures)

  • 송종걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.199-206
    • /
    • 1997
  • Under sever earthquake, structural elements or structures may sustain a large number of inelastic excursions. To predict seismic damage of the structures with accuracy, much research for general definition of structural collapse and seismic damage analysis is required. The ductility method, the energy method and Park and Ang method for seismic damage analysis of structural elements and structures are compared in this paper. Also, the seismic damage analysis for system-level of structure is carried out using the ESDOF-system method and Powell method. To compare tendency of the seismic damage analysis using each methods, example analysis is accomplished for several cases of different structures and different earthquake excitation.

  • PDF

선형구조해석을 통한 노후된 학교시설 내진성능평가 (Seismic Performance Evaluation of An Old School Building Through Linear Analysis)

  • 이도형;김태완;김승래;추유림;김현식
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.21-27
    • /
    • 2018
  • In January 2018, the Ministry of Education published "Seismic design criteria for school buildings" and "Manual for seismic performance evaluation and retrofit of school buildings" to evaluate seismic performances through linear analysis. This paper evaluates the seismic performance of an old school building through the linear analysis. The target building was constructed in the late 1970s, and the seismic-force-resisting system was assumed to be a reinforced concrete moment frame with an un-reinforced masonry wall. As a result of the evaluation, the target building does not satisfy the 'life safety' level of 1.2 times the design spectrum. The average strength ratio of moment frames, an indicator of the level of seismic performance tends to be controlled by beams. However, through the Pohang earthquake, it was known that the short column effect caused by the partially infilled masonry wall caused shear failure of the columns in school buildings. Therefore, it is necessary to improve the linear analysis so that the column controls the average strength ratio of moment frames.