• 제목/요약/키워드: seismic isolation device

검색결과 62건 처리시간 0.024초

내진시험을 통한 IRB 시스템의 성능 평가 (Performance Evaluation of IRB System Using Seismic Isolation Test)

  • 박영기;하성훈;우제관;최승복;김현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.401-406
    • /
    • 2013
  • This paper presents experimental evaluation of IRE (isolation roller bearing) seismic isolation device. From the combination of base isolation on the IRE system displacement response spectrum and acceleration response spectrum, the compressive strength and the coefficient of friction experiments. Also the IRE system is evaluated by environment test according to KS standards. Both the resonance and seismic experiments using a combination of the IRE and Natural Rubber Bearing (NRB) are performed in order to analyze the seismic isolation of the IRE system dynamic characteristics. For the given load and exciting frequency, the resonant frequency becomes lower, but the resonant magnification remains to be same. However, it is shown that when we consider the IRE only, the vibration on the table with the horizontal movement and the independent horizontal displacement due to the rolling motion of the plate and roller are significantly reduced. This result verifies that the proposed optimal design method of the IRE system is very effective.

  • PDF

지진격리된 원전배관의 지진취약도 분석 (Seismic Fragility Analysis of Base Isolated NPP Piping Systems)

  • 전법규;최형석;함대기;김남식
    • 한국지진공학회논문집
    • /
    • 제19권1호
    • /
    • pp.29-36
    • /
    • 2015
  • Base isolation is considered as a seismic protective system in the design of next generation Nuclear Power Plants (NPPs). If seismic isolation devices are installed in nuclear power plants then the safety under a seismic load of the power plant may be improved. However, with respect to some equipment, seismic risk may increase because displacement may become greater than before the installation of a seismic isolation device. Therefore, it is estimated to be necessary to select equipment in which the seismic risk increases due to an increase in the displacement by the installation of a seismic isolation device, and to perform research on the seismic performance of each piece of equipment. In this study, modified NRC-BNL benchmark models were used for seismic analysis. The numerical models include representations of isolation devices. In order to validate the numerical piping system model and to define the failure mode, a quasi-static loading test was conducted on the piping components before the analysis procedures. The fragility analysis was performed by using the results of the inelastic seismic response analysis. Inelastic seismic response analysis was carried out by using the shell finite element model of a piping system considering internal pressure. The implicit method was used for the direct integration time history analysis. In addition, the collapse load point was used for the failure mode for the fragility analysis.

평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석 (Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures)

  • 박효선;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

Modeling of triple concave friction pendulum bearings for seismic isolation of buildings

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제40권3호
    • /
    • pp.315-334
    • /
    • 2011
  • Seismic isolated building structures are examined in this study. The triple concave friction pendulum (TCFP) is used as a seismic isolation system which is easy to be manufactured and enduring more than traditional seismic isolation systems. In the TCFP, take advantage of weight which pendulum carrying and it's geometry in order to obtain desirable result of seismic isolation systems. These systems offer advantage to buildings which subject to severe earthquake. This is result of damping force of earthquake by means of their internal constructions, which consists of multiple surfaces. As the combinations of surfaces upon which sliding is occurring change, the stiffness and effective friction change accordingly. Additionally, the mentioned the TCFP is modeled as of a series arrangement of the three single concave friction pendulum (SCFP) bearings. A two dimensional- and eight- story of a building with and without isolation system are used in the time history analysis in order to investigate of the effectiveness of the seismic isolation systems on the buildings. Results are compared with each other to emphasize efficiency of the TCFP as a seismic isolation device against the other friction type isolation system like single and double concave surfaces. The values of the acceleration, floor displacement and isolator displacement obtained from the results by using different types of the isolation bearings are compared each other. As a result, the findings show that the TCFP bearings are more effective devices for isolation of the buildings against severe earthquakes.

300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석 (Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span)

  • 박강근;정미자;이동우
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

마찰진자시스템의 강성중심 변화에 따른 면진된 원전 구조물의 지진응답평가 (Seismic Response Evaluation of Seismically Isolated Nuclear Power Plant with Stiffness Center Change of Friction Pendulum Systems)

  • 석철근;송종걸
    • 한국지진공학회논문집
    • /
    • 제21권6호
    • /
    • pp.265-275
    • /
    • 2017
  • In order to improve the seismic performance of structures, friction pendulum system (FPS) is the most commonly used seismic isolation device in addition to lead rubber bearing (LRB) in high seismicity area. In a nuclear power plant (NPP) with a large self weight, it is necessary to install a large number of seismic isolation devices, and the position of the center of rigidity varies depending on the arrangement of the seismic isolation devices. Due to the increase in the eccentricity, which is the difference between the center of gravity of the nuclear structure and the center of stiffness of the seismic isolators, an excessive seismic response may occur which could not be considered at the design stage. Three different types of eccentricity models (CASE 1, CASE 2, and CASE 3) were used for seismic response evaluation of seismically isolated NPP due to the increase of eccentricity (0%, 5%, 10%, 15%). The analytical model of the seismic isolation system was compared using the equivalent linear model and the bilinear model. From the results of the seismic response of the seismically isolated NPP with increasing eccentricity, it can be observed that the effect of eccentricity on the seismic response for the equivalent linear model is larger than that for the bilinear model.

건물의 질량중심과 면진층의 강성중심 차이에 따른 면진효과 (Seismic Isolation Effects Due to the Difference Between the Center of Mass of the Building and the Center of Stiffness of Isolation Layer)

  • 허무원;천영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.107-115
    • /
    • 2014
  • 본 연구에서는 건물의 질량중심과 면진층의 강성중심 사이의 차이에 따른 면진효과에 대하여 살펴보았다. 면진기술은 면진층에 설치되는 면진장치의 성능에 크게 의존하는 기술이므로 면진장치 제작 후 전수검사를 통하여 면진장치의 수평강성을 검토하게 되어 있다. 하지만 면진장치 성능실험 시 각각의 면진장치의 품질기준은 건축기준에는 정해져 있지 않으며, 이로 인해 설계 시 적용된 강성과 실제 강성의 차이가 발생하여 면진층 상부 부재에 큰 문제를 야기할 수 있다. 연구결과, 최대응답변위의 차이는 크게 나타나지 않았으나 편심이 증가할수록 최대응답가속도, 층전단력 및 상부구조의 부재력은 크게 증가하여 일부 부재에서는 과도한 손상이 예상된다. 따라서 면진층은 실제 장치 제작 후 전수검사를 실시하여 반드시 설계된 의도대로 편심이 발생하지 않도록 장치를 재배치할 필요가 있으며, 가능하다면 건물의 질량중심과 강성중심의 차이는 동일하게 설계할 것을 추천한다.

시험평가법을 이용한 IRB 면진장치 롤러 설계 : Part 1. 기하학적 형상 및 크라우닝 (Roller Design of IRB Seismic Isolation Device Using Testing Evaluation : Part I. Geometry Dimension and Crowning)

  • 박영기;하성훈;성민상;전준철;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권2호
    • /
    • pp.185-191
    • /
    • 2013
  • This paper presents a new method for roller design of IRB(isolation roller bearing) seismic isolation device using experimental evaluation. Three layered plate is adopted for the IRB in which the upper plate is placed on x direction and the lower plate is placed on y direction. The rollers placed in each plate make a plate movement. The roller is then optimally designed using variable geometric conditions. Stress distribution depends on the diameter and length of the roller and hence this is used for the determination of optimal geometry of the roller. In the experimental evaluation, it is observed that stress concentration at the end sides of roller is decreased and geometric coefficients depend on crowning dimension. In addition, in order to determine optimal design parameters of the roller the plastic deformation and friction are experimentally identified.

시험평가법을 이용한 IRB 면진장치 롤러 설계 : Part 2. 소재 열처리 (Roller Design of IRB Seismic Isolation Device Using Test Evaluation : Part II. Heat Treatment of Material)

  • 박영기;하성훈;성민상;전준철;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.332-337
    • /
    • 2013
  • This paper presents a subsequent research work on the roller design of IRB(isolation roller bearing) seismic isolation device presented in Part 1 by focusing on heat treatment. The hardness and friction factor are very important factors of material and after-treatment process selection. Normally, roller bearing consists of roller and retainer. The roller gets high pressure constantly, while the retainer gets tensile and compressive stress. Therefore, sensitive material selection and heat treatment of each part is quite important. In this experimental evaluation, carbon steel, chrome special steel and others are employed and their characteristics after heat treatment are identified. Each material is prepared by refining high frequency heat treatment. The friction factor and static load capacity of manufactured material are experimentally identified and destructive test of material is processed. Optimal material and heat treatment conditions for IRB roller bearing are determined based on experiment results.

Effect of the limiting-device type on the dynamic responses of sliding isolation in a CRLSS

  • Cheng, Xuansheng;Jing, Wei;Li, Xinlei;Lu, Changde
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.133-144
    • /
    • 2018
  • To study the effectiveness of sliding isolation in a CRLSS (concrete rectangular liquid-storage structure) and develop a reasonable limiting-device method, dynamic responses of non-isolation, sliding isolation with spring limiting-devices and sliding isolation with steel bar limiting-devices are comparatively studied by shaking table test. The seismic response reduction advantage of sliding isolation for concrete liquid-storage structures is discussed, and the effect of the limiting-device type on system dynamic responses is analyzed. The results show that the dynamic responses of sliding isolation CRLSS with steel bar-limiting devices are significantly smaller than that of sliding isolation CRLSS with spring-limiting devices. The structure acceleration and liquid sloshing wave height are greatly influenced by spring-limiting devices. The acceleration of the structure in this case is close to or greater than that of a non-isolated structure. Liquid sloshing shows stronger nonlinear characteristics. On the other hand, sliding isolation with steel bar-limiting devices has a good control effect on the structural dynamic response and the liquid sloshing height simultaneously. Thus, a limiting device is an important factor affecting the seismic response reduction effect of sliding isolation. To take full advantage of sliding isolation in a concrete liquid-storage structure, a reasonable design of the limiting device is particularly important.