• Title/Summary/Keyword: seismic hazard curve

Search Result 35, Processing Time 0.02 seconds

A Case Study on the Seismic Hazard Classification of Domestic Drinking Water Earthfill Dams Using Zero Seismic Failure Probability Curve (지진파괴확률 영곡선 활용 국내 식수전용 흙댐의 지진 위험도 분류 사례 연구)

  • Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • Most of the drinking water dams managed by the local governments in Korea are earthfill dams, and these dams have almost no geotechnical property information necessary for seismic performance evaluation. Nevertheless, in the rough planning stage for improving seismic safety for these dams, it is necessary to classify their relative seismic hazard against earthquakes and conduct an additional ground investigation. The zero seismic failure probability curve is a curve suggested in this study in which the probability of failure due to an earthquake becomes '0' regardless of the geotechnical properties of the earthfill dam. By examining the method and procedure for calculating failure probability due to an earthquake suggested in previous researches, the zero seismic failure probability curves for an earthquake in 1,000-year and 2,400-year return periods in Korea were presented in the form of a hyperbola on the plane of the dam height versus freeboard ratio (ratio of freeboard to dam height), respectively. The distribution characteristics of the dam height and the freeboard ratio of 81 Korean earthfill dams were presented. The two proposed zero seismic failure probability curves are shown on the plane of the dam height versus freeboard ratio, and the relative seismic hazard of 81 dams can be classified into three groups using these curves as boundaries. This study presented the method of classifying the relative seismic hazard and the classification result.

Seismic risk assessment of intake tower in Korea using updated fragility by Bayesian inference

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.317-326
    • /
    • 2019
  • This research aims to assess the tight seismic risk curve of the intake tower at Geumgwang reservoir by considering the recorded historical earthquake data in the Korean Peninsula. The seismic fragility, a significant part of risk assessment, is updated by using Bayesian inference to consider the uncertainties and computational efficiency. The reservoir is one of the largest reservoirs in Korea for the supply of agricultural water. The intake tower controls the release of water from the reservoir. The seismic risk assessment of the intake tower plays an important role in the risk management of the reservoir. Site-specific seismic hazard is computed based on the four different seismic source maps of Korea. Probabilistic Seismic Hazard Analysis (PSHA) method is used to estimate the annual exceedance rate of hazard for corresponding Peak Ground Acceleration (PGA). Hazard deaggregation is shown at two customary hazard levels. Multiple dynamic analyses and a nonlinear static pushover analysis are performed for deriving fragility parameters. Thereafter, Bayesian inference with Markov Chain Monte Carlo (MCMC) is used to update the fragility parameters by integrating the results of the analyses. This study proves to reduce the uncertainties associated with fragility and risk curve, and to increase significant statistical and computational efficiency. The range of seismic risk curve of the intake tower is extracted for the reservoir site by considering four different source models and updated fragility function, which can be effectively used for the risk management and mitigation of reservoir.

Probabilistic seismic risk assessment of a masonry tower considering local site effects

  • Ozden Saygili
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.191-201
    • /
    • 2024
  • A comprehensive probabilistic seismic hazard analysis was carried out in Istanbul to examine the seismotectonic features of the region. The results showed that earthquakes can trigger one another, resulting in the grouping of earthquakes in both time and space. The hazard analysis utilized the Poisson model and a conventional integration technique to generate the hazard curve, which shows the likelihood of ground motion surpassing specific values over a given period. Additionally, the study evaluated the impact of seismic hazard on the structural integrity of an existing masonry tower by simulating its seismic response under different ground motion intensities. The study's results emphasize the importance of considering the seismotectonic characteristics of an area when assessing seismic hazard and the structural performance of buildings in seismic-prone regions.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Development of Ground Motion Response Spectrum for Seismic Risk Assessment of Low and Intermediate Level Radioactive Waste Repositories (중·저준위 방사성 폐기물 처분장의 지진위험도 평가를 위한 지반운동스펙트럼 산정)

  • Kim, Min-Kyu;Rhee, Hyun-Me;Lee, Kyoung-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • In this study, a ground motion response spectrum for the seismic risk assessment of low and intermediate level radioactive waste repositories was developed. For the development of the ground motion response spectrum, a probabilistic seismic hazard analysis (PSHA) was performed. Through the performance of a PSHA, a seismic hazard curve which was based on a seismic bed rock was developed. A uniform hazard spectrum was determined by using a developed seismic hazard curve. Artificial seismic motions were developed based on the uniform hazard spectrum. A seismic response analysis was performed on the developed artificial seismic motion. Finally, an evaluation response spectrum for the seismic risk assessment analysis of low and intermediate level radioactive waste repositories was developed.

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

Use of the t-Distribution to Construct Seismic Hazard Curves for Seismic Probabilistic Safety Assessments

  • Yee, Eric
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.373-379
    • /
    • 2017
  • Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

Bayesian-based seismic margin assessment approach: Application to research reactor

  • Kwag, Shinyoung;Oh, Jinho;Lee, Jong-Min;Ryu, Jeong-Soo
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • A seismic margin assessment evaluates how much margin exists for the system under beyond design basis earthquake events. Specifically, the seismic margin for the entire system is evaluated by utilizing a systems analysis based on the sub-system and component seismic fragility data. Each seismic fragility curve is obtained by using empirical, experimental, and/or numerical simulation data. The systems analysis is generally performed by employing a fault tree analysis. However, the current practice has clear limitations in that it cannot deal with the uncertainties of basic components and accommodate the newly observed data. Therefore, in this paper, we present a Bayesian-based seismic margin assessment that is conducted using seismic fragility data and fault tree analysis including Bayesian inference. This proposed approach is first applied to the pooltype nuclear research reactor system for the quantitative evaluation of the seismic margin. The results show that the applied approach can allow updating by considering the newly available data/information at any level of the fault tree, and can identify critical scenarios modified due to new information. Also, given the seismic hazard information, this approach is further extended to the real-time risk evaluation. Thus, the proposed approach can finally be expected to solve the fundamental restrictions of the current method.

Seismic Risk Assessment of Extradosed Bridges with Lead Rubber Bearings (LRB 면진장치가 설치된 엑스트라도즈드교의 지진위험도 평가)

  • Kim, Doo Kie;Seo, Hyeong Yeol;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.155-162
    • /
    • 2006
  • This study presents the seismic risk assesment for an extradosed bridge with seismic isolators of lead rubber bearings(LRB). First, the seismic vulnerability of a structure and then the seismic hazard of the site are evaluated using earthquake data set and seismic hazard map in Korea, and then the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic hinges of bridge columns and nonlinear characteristics of soil foundation. The ductility demand is adopted to describe the nonlinear behavior of a column, and the moment-curvature curve of a column is assumed to be bilinear hysterestic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And seismic hazard is estimated using the available seismic hazard maps. The results show that the effectiveness of the seismic isolators for the columns is more noticeable than those for cables and girders, in seismic isolated extradosed bridges under earthquakes.

Seismic fragility curves using pulse-like and spectrally equivalent ground-motion records

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.79-90
    • /
    • 2020
  • 4- and 8-storey reinforced-concrete frame buildings are analyzed under the suites of the near-fault pulse-like, and the corresponding spectrally equivalent far-fault ground-motion records. Seismic fragility curves for the slight, moderate, extensive, and complete damage states are developed, and the damage probability matrices, and the mean loss ratios corresponding to the Design Basis Earthquake and the Maximum Considered Earthquake hazard levels are compared, for the investigated buildings and sets of ground-motion records. It is observed that the spectrally equivalent far-fault ground-motion records result in comparable estimates of the fragility curve parameters, as that of the near-fault pulse-like ground-motion records. As a result, the derived damage probability matrices and mean loss ratios using two suites of ground-motion records differ only marginally (of the order of ~10%) for the investigated levels of seismic hazard, thus, implying the potential for application of the spectrally equivalent ground-motion records, for seismic fragility and risk assessment at the near-fault sites.