• Title/Summary/Keyword: seismic factors

검색결과 424건 처리시간 0.019초

현행 내진설계 규준의 수평강도 요구에 대한 평가 (Evaluation of the Strength Required in Current Seismic Design Code)

  • 한상환;오영훈;이리형
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.281-290
    • /
    • 1997
  • 현행 내진설계 규준에서 사용하고 있는 반응수정계수는 설계지진하중과 유사한 지진발생시 구조물이 비선형 거동을 하도록 탄성응답에서 요구되는 밑면전단력 값을 낮추는 계수라 할 수 있다. 따라서 반응수정계수는 하중저감계수(force reduction factor)라고 할 수 있으며, 이러한 값들은 경험적으로 결정된 것이어서 예상지진에 대하여 구조설계자가 설계한 건물이 어느정도의 비선형 거동을 할지는 예측하기가 힘들다. 본 연구에서는 목표가 되는 연성비(target ductility ratio)에 따라 요구되는 밑면전단력의 값을 구하고 이를 규준에서 요구하는 값과 비교할 것이다. 만약 요구되는 값이 규준 값 보다 크다면 이는 구조물이 가지는 부가강도(overstrength)나 잉여력(redundancy)이 담당해야 한다. 모멘트연성골조 건물을 설계한 후 이를 push-over 해석에 의하여 부가강도를 찾아 보아 요구강도와 비교할 것이다.

  • PDF

면진장치를 설치한 회전기기의 지진취약도 개선효과 분석 (Analysis of Seismic Fragility Improvement Effect of an Isolated Rotational Equipment)

  • 김민규;대조정수;전영선;최인길
    • 한국지진공학회논문집
    • /
    • 제11권6호
    • /
    • pp.69-78
    • /
    • 2007
  • 본 연구에서는 원자력발전소 비상디젤발전기의 내진안전성을 정량적으로 평가하기 위하여 지진취약도 분석방법을 제안하고 제안한 방법을 이용하여 비상디젤발전기의 지진취약도를 평가하여 정량적인 지진위험도를 제시하였다. 기존의 비상디젤발전기뿐만 아니라 면진장치를 설치하여 지진력 저감효과를 증대시킨 비상디젤발전기에 대한 지진취약도 분석을 함께 수행하여 비상디젤발전기와 같은 대형 회전기기의 경우 면진장치를 통한 지진취약도의 변화를 살펴보았다. 최종적으로 지진취약도 결과를 이용하여 HCLPF값의 변화를 비교하여 면진에 의하여 비상디젤발전기의 취약도를 크게 개선 할 수 있는 것을 알 수 있었으며, 면진된 경우 면진장치의 파괴가 전체 거동을 지배하므로 면진장치의 성능개선이 필요한 것을 알 수 있었다.

Design parameter dependent force reduction, strength and response modification factors for the special steel moment-resisting frames

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.273-290
    • /
    • 2011
  • In current ductility-based earthquake-resistant design, the estimation of design forces continues to be carried out with the application of response modification factors on elastic design spectra. It is well-known that the response modification factor (R) takes into account the force reduction, strength, redundancy, and damping of structural systems. The key components of the response modification factor (R) are force reduction ($R_{\mu}$) and strength ($R_S$) factors. However, the response modification and strength factors for structural systems presented in design codes were based on professional judgment and experiences. A numerical study has been accomplished to evaluate force reduction, strength, and response modification factors for special steel moment resisting frames. A total of 72 prototype steel frames were designed based on the recommendations given in the AISC Seismic Provisions and UBC Codes. Number of stories, soil profiles, seismic zone factors, framing systems, and failure mechanisms were considered as the design parameters that influence the response. The effects of the design parameters on force reduction ($R_{\mu}$), strength ($R_S$), and response modification (R) factors were studied. Based on the analysis results, these factors for special steel moment resisting frames are evaluated.

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.

곡선교의 합리적인 지진해석기법 및 지진응답특성에 관한 연구 (Study on the Rational Analysis Methods and Seismic Responses of Curved Bridges)

  • 김상효;조광일;박병규
    • 대한토목학회논문집
    • /
    • 제26권6A호
    • /
    • pp.955-963
    • /
    • 2006
  • 곡선교의 기하학적 특징으로 인하여 곡선교의 지진응답은 직선교와는 다른 응답특성을 나타내게 될 것으로 예상된다. 본 논문에서는 곡선교의 모형화 방법 및 다양한 영향인자들의 적용에 따른 지진응답특성을 분석하고자한다. 곡선교의 지진응답 특성을 분석하기 위하여 일반적으로 사용되는 곡선교의 수치해석모형을 지점부가 보강된 모형으로 개선하였으며, 정밀모형과의 비교를 통하여 개선된 모형의 적합성을 검증하였다. 본 논문에서는 곡선교의 지진응답에 영향을 미칠 수 있는 곡선반경이나 받침배치 조건에 따른 곡선교의 지점부 및 교각에서의 변위와 수평력을 중심으로 분석하였다. 지진하중은 직교되는 2방향으로 작용하는 것으로 가정하여, 지진하중의 작용방향을 변화시키면서 지진응답을 분석하였으며, 대상교량으로는 곡선교의 대표적인 형식인 단경간 곡선교와 3경간 연속 곡선교를 선택하였다. 분석결과, 단경간 곡선교는 고정하중 및 지진하중의 작용으로 인한 지점부의 정반력 및 부반력이 크게 발생할 수 있는 것으로 나타났으며, 연속 곡선교의 경우 대상교량의 곡선 반경에 따라 지진하중의 작용방향에 영향을 받는 것으로 나타났다. 또한, 곡선반경 변화에 따라 접선방향 받침배치와 현방향 받침배치의 지진응답 특성에 차이가 있는 것으로 나타났다.

지진시 비탈면의 영구변위 발생에 따른 응답특성 분석 (Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope)

  • 안재광;박상기;김우석;손수원
    • 한국지반공학회논문집
    • /
    • 제35권12호
    • /
    • pp.135-145
    • /
    • 2019
  • 비탈면 붕괴는 크게 내적요인과 외적요인으로 분류할 수 있다. 내적요인은 토층 깊이, 사면경사, 흙의 전단강도 등의 기존에 비탈면의 형성과 함께 내재 되어있는 공학적 요인이며, 외적요인은 지진과 같은 하중이다. 이때 최대가속도(PGA), 최대속도(PGV), Arias계수(I), 고유주기(Tp), 스펙트럼 가속도(SaT=1.0) 등은 지진의 외적요인으로 대변되는 값이다. 특히, 최대지반가속도(peak ground acceleration, PGA)는 지진의 지반 운동 크기를 정의하는 가장 대표적인 값이지만 동일한 최대 지반가속도 값을 가지는 진동이라도 지진의 지속시간에 따라 달라지는 사면에서의 변위를 충분히 고려하지 못하는 단점을 가지고 있다. 본 연구에서는 인공사면을 대상으로 2차원 평면변형률 조건의 수치해석을 수행하였으며, 다양한 지진 시나리오의 PGA를 0.2g로 스케일링하여 적용했을 때 비탈면에서 발생하는 응답특성을 분석하였다. 분석 결과, 비탈면의 상층부와 하층부의 응답은 활동면 발생 여부에 따라 차이를 보이며, 입력 지진파의 외적요인 보다는 소성변형을 유발시킨 진동 특성의 영향을 받는 것으로 나타났다.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes

  • Yon, Burak
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.709-718
    • /
    • 2020
  • Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques

  • Preciado, Adolfo;Bartoli, Gianni;Budelmann, Harald
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.339-352
    • /
    • 2015
  • Ancient masonry towers constitute a relevant part of the cultural heritage of humanity. Their earthquake protection is a topic of great concern among researchers due to the strong damage suffered by these brittle and massive structures through the history. The identification of the seismic behavior and failure of towers under seismic loading is complex. This strongly depends on many factors such as soil characteristics, geometry, mechanical properties of masonry and heavy mass, as well as the earthquake frequency content. A deep understanding of these aspects is the key for the correct seismic vulnerability evaluation of towers and to design the most suitable retrofitting measure. Recent tendencies on the seismic retrofitting of historical structures by means of prestressing are related to the use of smart materials. The most famous cases of application of prestressing in towers were discussed. Compared to horizontal prestressing, vertical post-tensioning is aimed at improving the seismic behavior of towers by reducing damage with the application of an overall distribution of compressive stresses at key locations.