• 제목/요약/키워드: seismic effects

검색결과 1,124건 처리시간 0.02초

불균질 이방성 매질에서의 탄성파 주시 토모그래피 (Seismic Traveltime Tomography in Inhomogeneous Anisotropic Media)

  • 정창호;서정희
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.209-214
    • /
    • 2007
  • In Korean geology that crystalline rock is dominant, the properties of subsurface including the anisotropy are distributed complexly and changed abruptly. Because of such geological environments, cross-hole seismic traveltime tomography is widely used to obtain the high resolution image of the subsurface for the engineering purposes in the geotechnical sites. However, because the cross-hole tomography has a wide propagation angle coverage relatively, its data tend to include the seismic velocity anisotropy comparing with the surface seismic methods. It can cause the misinterpretation that the cross-hole seismic data including the anisotropic effects are analyzed and treated with the general processing techniques assuming the isotropy. Therefore, we need to consider the seismic anisotropy in cross-hole seismic traveltime tomography. The seismic anisotropic tomography algorithm, which is developed for evaluation of the velocity anisotropy, includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudo-beta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage.

  • PDF

상세재해지도를 고려한 경기지역 학교건축물의 내진성능평가 (Seismic Performance Evaluation of School Buildings in Gyunggi Region Considering Seismic Hazard Map)

  • 유한국;박태원;이상현;정란;조승호
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.66-73
    • /
    • 2009
  • Since the school buildings are generally used as public shelters when the natural disasters such as flood and earthquake occur, it must be designed to show enough structural performance when subject to earthquake. Major failure mode of the school buildings observed in past earthquakes were shear failure of column of which length is shortened by infilled masonry blocks. In this study, the seismic risk of the reinforced concrete school building structure was evaluated by using the seismic performance evaluation methods of low-story RC structures developed in Japan and the required seismic performance index which is obtained according to the KBC2008 seismic hazard map and soil types. In this paper, the seismic performance of the school building is evaluated by considering this short-column effects, building shape and deterioration.

Radian of the vault influencing the seismic performances of straight wall arch underground structures

  • Ma, Chao;Lu, Dechun;Qi, Chengzhi;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.637-649
    • /
    • 2021
  • Great efforts have been conducted to investigate the seismic performances of the arch and rectangular underground structures, however, the differences between seismic responses of these two types of underground structures, especially the vault radian influencing the seismic responses of arch structures are not clarified. This paper presents a detailed numerical investigation on the seismic responses of arch underground structures with different vault radians, and aims to illustrate the rule that vault radian affects the seismic responses of underground structures. Five arch underground structures are built for nonlinear soil-structure interaction analysis. The internal forces of the structural components of the underground structures only under gravity are discussed detailedly, and an optimum vault radian for perfect load-carrying functionality of arch underground structures is suggested. Then the structures are analyzed under seven scaled ground motions, amounting to a total of 35 dynamic calculations. The numerical results show that the vault radian can have beneficial effects on the seismic response of the arch structure, compared to the rectangular underground structures, causing the central columns to suffer smaller axial force and horizontal deformation. The conclusions provide some directive suggestions for the seismic design of the arch underground structures.

Time-dependent seismic risk analysis of high-speed railway bridges considering material durability effects

  • Yan Liang;Ying-Ying Wei;Ming-Na Tong;Yu-Kun Cui
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.275-288
    • /
    • 2023
  • Based on the crucial role of high-speed railway bridges (HSRBs) in the safety of high-speed railway operations, it is an important approach to mitigate earthquake hazards by proceeding with seismic risk assessments in their whole life. Bridge seismic risk assessment, which usually evaluates the seismic performance of bridges from a probabilistic perspective, provides technical support for bridge risk management. The seismic performance of bridges is greatly affected by the degradation of material properties, therefore, material damage plays a nonnegligible role in the seismic risk assessment of the bridge. The effect of material damage is not considered in most current studies on seismic risk analysis of bridges, nevertheless. To fill the gap in this area, in this paper, a nonlinear dynamic time-history analysis has been carried out by establishing OpenSees finite element model, and a seismic vulnerability analysis is carried out based on the incremental dynamic analysis (IDA) method. On this basis, combined with the site risk analysis, the time-dependent seismic risk analysis of an offshore three-span HSRB in the whole life cycle has been conducted. The results showed that the seismic risk probabilities of both components and system of the bridge increase with the service time, and their seismic risk probabilities increase significantly in the last service period due to the degradation of the material strength, which demonstrates that the impact of durability damage should be considered when evaluating the seismic performance of bridges in the design and service period.

Effects of foundation flexibility on seismic demands of asymmetric buildings subject to near-fault ground motions

  • Atefatdoost, Gholam Reza;JavidSharifi, Behtash;Shakib, Hamzeh
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.637-648
    • /
    • 2018
  • When the centers of mass and stiffness of a building do not coincide, the structure experiences torsional responses. Such systems can consist of the underlying soil and the super-structure. The underlying soil may modify the earthquake input motion and change structural responses. Specific effects of the input motion shall also not be ignored. In this study, seismic demands of asymmetric buildings considering soil-structure interaction (SSI) under near-fault ground motions are evaluated. The building is modeled as an idealized single-story structure. The soil beneath the building is modeled by non-linear finite elements in the two states of loose and dense sands both compared with the fixed-base state. The infinite boundary conditions are modelled using viscous boundary elements. The effects of traditional and yield displacement-based (YDB) approaches of strength and stiffness distributions are considered on seismic demands. In the YDB approach, the stiffness considered in seismic design depends on the strength. The results show that the decrease in the base shear considering soft soil induced SSI when the YDB approach is assumed results only in the center of rigidity to control torsional responses. However, for fixed-base structures and those on dense soils both centers of strength and rigidity are controlling.

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.

Seismic behavior of steel cabinets considering nonlinear connections and site-response effects

  • Tran, Thanh-Tuan;Nguyen, Phu-Cuong;So, Gihwan;Kim, Dookie
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.17-29
    • /
    • 2020
  • This paper presents experimental and numerical studies on the seismic responses of the steel cabinet facility considering the nonlinear behavior of connections and site-response effects. Three finite element (FE) models with differences of type and number of connections between steel plates and frame members have been developed to demonstrate adequately dynamic responses of structures. The screw connections with the bilinear force-deformation relationship are proposed to represent the inelastic behavior of the cabinet. The experiment is carried out to provide a verification with improved FE models. It shows that the natural frequencies of the cabinet are sensitive to the plate and frame connectors. The screw connections reduce the free vibration compared to the weld one, with decreased values of 2.82% and 4.87% corresponding to front-to-back and side-to-side directions. Additionally, the seismic responses are investigated for various geological configurations. Input time histories are generated so that their response spectrums are compatible with a required response spectrum via the time-domain spectral matching. The results indicate that both site effects and nonlinear behavior of connections affect greatly on the seismic response of structures.

등대구조물의 면진시스템 적용방안 연구 (Application of Isolation System to the Lighthouse Structure)

  • 허무원;천영수;김동영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.27-36
    • /
    • 2013
  • 본 연구에서는 등대 구조물을 대상으로 한 면진기술 적용방안을 제시함으로써 지진에 대해 무방비상태에 놓여 있는 등대구조물의 지진안전도 확보방안을 제시하였다. 또한, 제안된 면진기술 적용방안을 활용하여 내진설계 이전에 지어진 등대를 대상으로 등대전체를 면진하였을 경우와 등대 렌즈만을 면진하였을 경우에 대하여 면진효과를 분석해 보았다. 해석결과, 등대 전체를 면진화하였을 경우 최대응답가속도와 층전단력 측면에서 충분한 면진효과를 얻은 반면, 등대 렌즈만을 면진화한 경우에는 렌즈부의 면진효과는 유효한 것으로 나타났으나 등대 자체의 안전이 확보되지 못한 상황에서는 등대의 파괴가 선행될 가능성이 있음에 주의할 필요가 있는 것으로 나타났다. 또한 등대전체와 렌즈를 동시에 면진화한 경우 비 면진구조 대비 유효한 면진효과는 나타내었지만, 최대응답가속도가 등대전체를 면진화한 경우보다 증가하는 경향을 나타내었으며, 렌즈의 면진화로 인한 층전단력의 감소가 미소함으로 이중면진의 적용으로 인한 실효성은 그 효과가 크지 않은 것으로 나타났다.

면진된 모형 비상디젤발전기의 지진응답 실험 (Shaking Table Test of Isolated EDG Model)

  • 김민규;전영선
    • 한국지진공학회논문집
    • /
    • 제11권3호
    • /
    • pp.33-42
    • /
    • 2007
  • 본 연구에서는 원전내 주요 안전관련 기기중 비상디젤발전기를 대상으로 한 진동대 실험을수행하였다. 원전의 비상디젤 발전기는 원전 전체의 노심손상빈도에 미치는 영향이 매우 크며 또한 면진장치를 설치하여 지진력을 저감시킬 경우 큰 폭으로 노심손상빈도를 감소시킬 수 있으며, 가동중 발생하는 소음과 진동으로 인하여 주변 구조물과 기기에 영향을 미치기도 한다. 따라서 지진력 저감과 기계 진동의 저감효과를 동시에 고려하기 위한 면진장치를 적용하여 그 효과를 평가하여 보고자하였다. 면진장치로는 코일스프링과 점성 댐퍼가 결합된 형태의 면진장치를 선정하였다. 실험의 대상으로 하는 비상디젤발전기는 영광 5,6호기에 설치되어 있는 모델로서 축소모형을 제작하였으며, 제작된 모형에 적합한 코일스프링-점성댐퍼 시스템을 설계하여 제작하였다. 제작된 면진장치를 축소모형에 설치하여 설계지진을 이용한 진동대 시험을 수행하여 지진력 저감효과를 분석하였다 본 연구를 통하여 설계지진의 경우 20% 그리고 Scenario 지진의 경우 70% 까지의 지진력 저감이 가능한 것을 확인하였으며, 면진장치의 기계적 특성이 설계값과 일치하지 않음으로 인하여 실제 지진력 저감효과가 크게 변할 수 있음을 확인할 수 있었다.

비정형 RC 건축구조물의 비선형 지진응답 평가를 위한 개선된 횡하중 분배 방법 (Improved Distribution of Lateral Seismic Forces for Evaluation of Inelastic Seismic Response of RC Irregular Building Structures)

  • 최원호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.322-329
    • /
    • 2000
  • Current seismic design codes for building structures are based on the methods which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. Pushover analysis of fast becoming an accepted method for the seismic evaluation of building structures. The popularity of this approximate, nonlinear static analysis method is due to its conceptual simplicity and ability to graphically describe a capacity and demand of structure. However, some of the shortcomings of the pushover analysis, especially for longer period and irregular buildings, is the inability of method to identify failure mechanisms due to effects of higher modes. In this paper proposed lateral load pattern which includes the contribution of higher modes of vibration for irregular building structure and compared to seismic response obtained by time history.

  • PDF