• 제목/요약/키워드: seismic displacement

검색결과 1,399건 처리시간 0.033초

점성 감쇠기를 이용한 인접 비대칭 강성 구조물의 내진보강 최적설계 (Optimal Seismic Reinforcement Design of Adjacent Asymmetric-Stiffness Structures with Viscous Dampers)

  • 성은희
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.60-70
    • /
    • 2022
  • This paper proposes an optimal design method of a seismic reinforcement system for the seismic performance of adjacent asymmetric-stiffness structures with viscous dampers. The first method considers plan asymmetry for efficient seismic reinforcement, and evaluates the seismic performance of optimal design applied to two cases of modeling: adjacent stiffness-asymmetric structures and adjacent stiffness-symmetric structures. The second method considers the response of asymmetric structures to derive the optimal objective function, and evaluates seismic efficiency of the objective function applied to two cases of responses: horizontal displacement and torsion. Numerical analyses are conducted on 7- and 10-story structures with a uni-asymmetric-stiffness plan using six cases of historic earthquakes, normalized to 0.4g. The results indicate that the seismic performance is excellent as modeled by adjacent asymmetric-stiffness structures and how much horizontal displacement is applied as the objective function.

운영 중인 도로 터널의 내진 성능 평가 (Evaluation of seismic performance of road tunnels in operation)

  • 안재광;박두희;김동규;김광염
    • 한국터널지하공간학회 논문집
    • /
    • 제15권2호
    • /
    • pp.69-80
    • /
    • 2013
  • 본 연구에서는 터널에 대한 내진설계 기준이 처음으로 제정된 1999년 이전에 설계된 현재 운영중인 도로 터널의 지진에 대한 성능을 평가하였다. 이를 위하여 1999년 이전에 설계된 도로 터널 자료를 조사하였으며 이중에서 가장 지진에 취약할 것으로 예상되는 대표 단면을 선정하여 이들에 대한 정밀한 안전성 평가를 수행하였다. 사용된 해석방법은 응답변위법과 동적해석이며 모두 유한차분해석 프로그램을 이용하였다. 응답변위법은 전체영역과 축소된 해석 영역에 대한 해석을 수행하였으며 동적해석은 비선형 해석을 수행하였다. 해석 결과, 축소된 해석영역에 대한 응답변위법과 동적해석의 결과가 매우 유사한 것으로 나타났으며 내진설계가 적용되지 않은 터널들도 재현주기 1000년 지진에 대해서는 안전하며 추가적인 보강은 불필요한 것으로 나타났다.

원전 적용을 위한 면진장치의 성능기반 설계 변위 추정 (Estimation of the Isolator Displacement for the Performance Based Design of Nuclear Power Plants)

  • 김정한;최인길;김민규
    • 한국지진공학회논문집
    • /
    • 제18권6호
    • /
    • pp.291-299
    • /
    • 2014
  • There has been an increasing demand for introducing a base isolation system to secure the seismic safety of a nuclear power plant. However, the design criteria and the safety assessment methodology of a base isolated nuclear facility are still being developed. A performance based design concept for the base isolation system needs to be added to the general seismic design procedures. For the base isolation system, the displacement responses of isolators excited by the extended design basis earthquake are important as well as the design displacement. The possible displacement response by the extended design basis earthquake should be limited less than the failure displacement of the isolator. The failure of isolators were investigated by an experimental test to define the ultimate strain level of rubber bearings. The uncertainty analysis, considering the variations of the mechanical properties of isolators and input ground motions, was performed to estimate the probabilistic distribution of the isolator displacement. The relationship of the displacement response by each ground motion level was compared in view of a period elongation and a reduction of damping. Finally, several examples of isolator parameters are calculated and the considerations for an acceptable isolation design is discussed.

수직전력구 내진설계를 위한 응답변위 산정에 대한 사례 조사 (Case Study of Estimate the Response Displacement for the Seismic Design of Shaft Cable Tunnel)

  • 김용민;정상섬;김영호;권영기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.634-639
    • /
    • 2009
  • The response displacement method is the most frequently used method for the seismic design of underground structures. Underground structures under seismic loading will tend to deform with the surrounding ground, and thus the structure is designed to accommodate the free-field deformation without loss of its structural integrity. This method is pseudo-static method, and response displacement of surrounding ground are most important steps. In this study, the single cosine method and the equivalent linear analysis are applied to estimate the response displacement of the real sites, and the results of the each method are compared. Response analysis was also performed with respect to bedrock depth. As a results, Equivalent linear analysis result was larger than single cosine method. And, the relative displacement becomes lager according to depth of the bedrock.

  • PDF

Seismic damage assessment of steel reinforced recycled concrete column-steel beam composite frame joints

  • Dong, Jing;Ma, Hui;Zhang, Nina;Liu, Yunhe;Mao, Zhaowei
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.73-84
    • /
    • 2018
  • Low cyclic loading tests are conducted on the steel reinforced recycled concrete (SRRC) column-steel (S) beam composite frame joints. This research aims to evaluate the earthquake damage performance of composite frame joints by performing cyclic loading tests on eight specimens. The experimental failure process and failure modes, load-displacement hysteresis curves, characteristic loads and displacements, and ductility of the composite frame joints are presented and analyzed, which shows that the composite frame joints demonstrate good seismic performance. On the basis of this finding, seismic damage performance is examined by using the maximum displacement, energy absorbed in the hysteresis loops and Park-Ang model. However, the result of this analysis is inconsistent with the test failure process. Therefore, this paper proposes a modified Park-Ang seismic damage model that is based on maximum deformation and cumulative energy dissipation, and corrected by combination coefficient ${\alpha}$. Meanwhile, the effects of recycled coarse aggregate (RCA) replacement percentage and axial compression ratio on the seismic damage performance are analyzed comprehensively. Moreover, lateral displacement angle is used as the quantification index of the seismic performance level of joints. Considering the experimental study, the seismic performance level of composite frame joints is divided into five classes of normal use, temporary use, repair after use, life safety and collapse prevention. On this basis, the corresponding relationships among seismic damage degrees, seismic performance level and quantitative index are also established in this paper. The conclusions can provide a reference for the seismic performance design of composite frame joints.

기존 학교건축물의 내진보강기법에 따른 내진성능평가 (Seismic Performance Evaluation According to Seismic Retrofit Techniques of Existing School Buildings)

  • 강종
    • 한국산업융합학회 논문집
    • /
    • 제15권1호
    • /
    • pp.29-36
    • /
    • 2012
  • Reinforced concrete shear walls and X-type steel braces were applied in seismic retrofit techniques for seismic performance evaluation of school buildings constructed in accordance with standard design announced by the ordinance of the ministry of construction in 1980s. Seismic performance evaluation was based on FEMA 356 using response spectrum as elastic analysis and conducted to pushover analysis with nonlinear static analysis. The maximum displacement ratio between floors in 4th and 3rd floors of the existing school buildings was less than 1.0%, which was functioning level in FEMA 356. However, because plastic hinge occurs somewhat in structural members according to the results of pushover analysis, partial reinforcement will be required. X-direction of the maximum lateral displacement of reinforced concrete shear walls than X-type steel braces was 45% and 32% in 4th and 3rd floors of school buildings, and Y-direction was 18% and 17%, respectively.

중심코아령사력댐의 지진응답해석 (Seismic Response Analysis of the Center-Core Rockfill Dam)

  • 오병현;임정열;이종옥
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.139-146
    • /
    • 2001
  • The seismic safety analysis were performed for the center-core rockfill dam(CCRD) The static and pseudo-static FEM analysis using seismic coefficient Method, and dynamic FEM analysis using Hachinohe earthquake wave(0.12g) were used for the seismic safety of CCRD. The results of seismic analysis were that the factor of safety of down slope was 1.5, horizontal displacement is about 14.3cm, and vertical displacement is 3.3cm at dam creast. The model dam did not show any seismic stability problems for 0.12g. And much more research is still necessary in seismic safety of CCRD.

  • PDF

나선철근교각의 내진성능에 관한 연구 (A Study on Seismic Performance of Spiral Prer)

  • 배성용;김광수;이형준;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.363-368
    • /
    • 2000
  • The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. However, The current seismic design requirements for bridges are based on the USA seismic codes for sever earthquake. This provides the basic factors that affects the performance of spiral reinforced concrete piers for seismic loading, and The specimen tests are performed based on load-displacement, effective stiffness and displacement ductility, etc. The quasi-static test was adopted in order to investigate seismic performance of the spiral reinforced concrete pier specimens which had different transverse steel amount, spacing and longitudinal steel ratio under different axial load levels. This study is concluded that seismic design for transverse reinforcement content of spiral reinforced concrete column has influenced on axial load and effective stiffness etc.

  • PDF

면진주파수가 원통형탱크의 구조응답에 미치는 영향 (Effects of Seismic Isolated Frequency in Structural Responses of Cylindrical Tanks)

  • 구경회;이재한;유봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.258-265
    • /
    • 1995
  • For design of seismic isolated system the determination of isolated frequency is very important. In this paper the effects of seismic isolated frequency for cylindrical tank are investigated using the 1940 EL Centre earthquake(NS). From the results of analysis the seismic isolated frequencies significantly depend on input acceleration and displacement components in lower frequency regions. Therefore, the seismic isolated frequency should be determined by consideration of input ground motion characteristics. For the seismic analysis the modified hysteretic hi-linear model of seismic isolators which can consider the yield load variation, shape of hysterisis loop variation and hardening effects of isolators is proposed. The analyses using the proposed model give similar displacement responses but higher maximum acceleration responses than those using the simple hysteretic hi-linear model.

  • PDF

유한요소해석 프로그램를 이용한 R.C교각의 내진성능 평가 기법 연구 (A Study on the Seisemic Performance Method for R.C bridge by using the Finite Element Analysis Program)

  • 박연수;최선민;이병근;서병철;박선준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.301-306
    • /
    • 2008
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-vased analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result, capacity spectrum method could realistically evaluate the non-elastic behavior of structures easilly and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structures and a verification of design for capacity target of the structure. We propose the seisemic performance method by using the Finite Element Analysis Program.

  • PDF