• 제목/요약/키워드: seismic design method

검색결과 1,045건 처리시간 0.024초

Beyond design basis seismic evaluation of underground liquid storage tanks in existing nuclear power plants using simple method

  • Wang, Shen
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2147-2155
    • /
    • 2022
  • Nuclear safety-related underground liquid storage tanks, such as those used to store fuel for emergency diesel generators, are critical components for safety of hundreds of existing nuclear power plants (NPP) worldwide. Since most of those NPP will continue to operate for decades, a beyond design base (BDB) seismic screening of safety-related underground tanks in those NPP is beneficial and essential to public safety. The analytical methodology for buried tank subjected to seismic effect, including a BDB seismic evaluation, needs to consider both soil-structure and fluid-structure interaction effects. Comprehensive analysis of such a soil-structure-fluid system is costly and time consuming, often subjected to availability of state-of-art finite element tools. Simple, but practically and reasonably accurate techniques for seismic evaluation of underground liquid storage tanks have not been established. In this study, a mechanics based solution is proposed for the evaluation of a cylindrical underground liquid storage tank using hand calculation methods. For validation, a practical example of two underground diesel fuel tanks in an existing nuclear power plant is presented and application of the proposed method is confirmed by using published results of the computer-aided System for Analysis of Soil Structural Interaction (SASSI). The proposed approach provides an easy to use tool for BDB seismic assessment prior to making decision of applying more costly technique by owner of the nuclear facility.

현행 내진설계 규준에서 요구되는 수평강도의 평가 방법 (Method of Evaluation of the Strength Required in Current Seismic Design Code)

  • 한상환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.193-200
    • /
    • 1997
  • Current seismic design code is based of the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, base shear forces required to maintain target ductility ratio were first calculated from nonlinear dynamic analysis on the single degree of freedom system. And then, base shear foeces specified in seismic design code compare with above results. If the strength(base shear) required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of static nonlinear analysis(push-over analysis).analysis).

  • PDF

변위기반 설계법에 의한 RC 기둥의 Steel Jacket 보강 내진성능개선 설계법 (Displacement Based Seismic Performance Improved Design of RC Column Retrofitted Steel Jacket)

  • 정인규;조창근;박순응
    • 한국공간구조학회논문집
    • /
    • 제10권4호
    • /
    • pp.49-57
    • /
    • 2010
  • 본 연구는 기존 철근콘크리트 구조물에 대하여 대표적인 변위-기반 설계법인 Chopra&Goel 이 제안한 직접변위-기반 설계법의 기본개념을 적용하여 최대 설계지반 가속도에 대한 보강 Steel Jacket의 두께를 결장하고, 결정된 보강 두께를 적용하여 보강전 후 성능설계기법에 의한 비선형 해석 및 보강설계법에 의한 보다 개선된 알고리즘 및 프로그램을 제시하였다. Steel Jacket 보강된 철근콘크리트 기둥에 대한 설계 변위 추정을 위해 Steel Jacket 보강된 철근콘크리트 부재의 비선형 층상화 세그멘트 해석 모델을 제시하고, 성능기반설계에 의한 성능개선설계를 위하여 목표성능변위 및 설계자전가속도 조건에 대해 직접 변위-기반 설계 방법 및 변위계 수법에 의한 내진성능개선 설계 방법을 제시하였다. 적용 예에서 본 방법은 기존 철근콘크리트 기둥과 비교하여 성능개선설계 결과 보강 전에 비해 변위 연성비 및 변위성능에서 크게 개선된 성능설계 결과를 제공해 주었다.

  • PDF

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • 제8권1호
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

기존 학교 건축물의 내진성능평가 및 보강방안 제안 (Proposed Seismic Performance Evaluation Enhancement for Existing School Building)

  • 황지훈;장정현;양경석;최재혁
    • 교육시설 논문지
    • /
    • 제19권4호
    • /
    • pp.29-38
    • /
    • 2012
  • Recently large scale earthquake s are occurred around the world following the damage of buildings. So the interest of preparing for earthquake seismic design and seismic performance has becoming high. School buildings are though used for educational purpose; they are also used as emergency shelter for local residents during earthquake disaster. However, the current seismic design ratio of our country (Korea) is 3.7% and if massive earthquake is occurred it follows a serious damage. In order to overcome this situation, seismic performance evaluation is carried out for existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear static analysis on existing school buildings for ATC-40 and FEMA-356 are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to verify the effect of retrofit enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effect of seismic retrofit time history analysis using nonlinear dynamic analysis is also performed and nonlinear behavior of earthquake load of seismic retrofit of structures was also investigated.

다자유도 철근 콘크리트 모멘트 골조의 Steel Jacket보강 내진성능개선 (Seismic Performance Improvement of MDOF Reinforced Concrete Moment Frame Retrofitted Steel Jacket)

  • 김준영;정인규;박순응
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.69-77
    • /
    • 2013
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete moment frame and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness. It also shows the result of the seismic performance improvement which is the ratio of seismic performance appreciation result yield displacement 19%, yield strength ratio 24%, displace ductility ratio the maximum 27% comparing Multi degree of freedom, column member of Reinforced Concrete with the performance improvement column member considering the thickness of the determined Steel Jacket. The developed Algorithm and program are easy to apply seismic design and application to the original Reinforced Concrete building, at the same time, it applicate to display well the design result of Target displacement performance level about nonlinear behavior.

Ansys를 이용한 축류송풍기의 내진설계 (The Seismic Design of Axial Blower Using Ansys)

  • 임형빈;김강성;허진욱;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.596-600
    • /
    • 2001
  • The seismic design for an axial blower is the procedure in which the required response spectrum (RRS) is computed by using the floor response spectrum (FRS). The seismic design is very important to reduce severe damages from an earthquake; therefore, the seismic design has been a great concern in engineering society. In this study, after finite element modeling is established by using Ansys, the modal data are obtained such as the natural frequencies, the participation factor, and so on. With these data, the RRS is acquired by a numerical approach. The seismic safety of the axial blower is evaluated.

  • PDF

평저형 원형 저장탱크의 지진거동 특성 및 성능기반 내진설계법 제안 (Seismic Behavior Characteristics of Ground Storage Circular Tanks and Proposal of Performance-based Seismic Design Method)

  • 한동윤;선창호;김익현;남형모
    • 한국가스학회지
    • /
    • 제27권4호
    • /
    • pp.34-42
    • /
    • 2023
  • 산업시설이 국가 경제에 기여하는 바를 고려할 때 지진에 대한 운전성 확보는 매우 중요하다. 그러나, 현행 내진설계의 기본 개념은 대규모 지진에 대해 주로 시설물의 연성거동을 허용하며 붕괴방지를 목적으로 구조적인 안전성만을 고려한다. 산업시설의 운전성 확보를 위해, 산업시설물의 구조거동 특성에 따라 운전성을 유지하기 위한 내진성능수준이 다양할 수 있으며, 이를 만족하기 위한 내진설계방법이 필요하다.본 연구에서는 평저형 저장탱크에 대한 비선형 응답이력 해석으로 비선형 지진거동 특성(R-μ-T)을 분석하고 이를 바탕으로 신뢰도 기반의 성능기반 내진설계 방법을 새롭게 제안하였다.

지중구조물의 내진해석방법에 관한 연구 (The Study on Seismic Analysis Methods for Underground Structures)

  • 정광모;방명석
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2011년도 추계학술대회
    • /
    • pp.75-84
    • /
    • 2011
  • 본 논문에서는 지하공간에 설치되는 지중구조물에 대한 내진해석에 관한 연구로 구조물의 거동특성과 내진설계방법의 종류에 따라 수치해석을 실시하였다. 이를 위해 현재 가장 많이 실무에 적용되고 있는 내진설계방법인 등가정적해석법과 응답변위법을 적용하고 정밀한 해석이 가능한 시간이력해석법에 의해 검증을 시행하였으며 구조물 내진해석은 3-D 모델링에 의해 구조물-지반 상호작용을 고려하고 국내의 콘크리트구조설계기준에 따라 수행하였다. 해석 결과 현재 실무에서 적용되고 있는 등가정적해석법과 응답변위법을 적용하는 경우 정밀한 동적해석법 보다 다소 크게 산정되어 실무적용에 문제가 없음을 확인 할 수 있었다.

  • PDF

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.