• Title/Summary/Keyword: seismic demand

Search Result 445, Processing Time 0.022 seconds

The Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능)

  • 정지만;장승필;인성빈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.189-196
    • /
    • 2002
  • The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

  • PDF

Resilient structures in the seismic retrofitting of RC frames: A case study

  • Pallares, Francisco J.;Dominguez, David;Pallares, Luis
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • It is very important to allocate valuable resources efficiently when reconstructing buildings after earthquake damage. This paper proposes the use of a simple seismic retrofitting system to make buildings more resilient than the stiffer systems such as the shear walls implemented in Chile after the earthquake in 2010. The proposal is based on the use of steel chevron-type braces in RC buildings as a dual system to improve the seismic performance of multistory buildings. A case study was carried out to compare the proposal with the shear wall solution for the typical seismic Chilean RC building from the structural and economic perspectives. The results show that it is more resilient than other stiffer seismic solutions, such as shear walls, reduces the demand, minimizes seismic damage, gives reliable earthquake protection and facilitates future upgrades and repairs while achieving the level of immediate occupancy without the costs of the shear walls system.

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.

Confinement Steel Amount for Ductility Demand of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 소요연성도에 따른 심부구속철근량)

  • Son, Hyeok-Soo;Lee, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.715-725
    • /
    • 2003
  • This paper is a part of a research program to develop a new design method for reinforced concrete bridge columns under seismic loading. The objectives of this paper are to investigate the relationship between ductility and confinement steel amount and to propose a design equation for reinforced concrete bridge columns. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 reinforced concrete columns confined with spirals or perfect circular hoops were selected by combination of variables such as section diameter, aspect ratio, concrete compressive strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. Based on the parametric study a new design equation for confinement steel amount considering ductility demand was proposed, which can be used in the new seismic design method, i.e. ductility-based seismic design, for RC bridge columns.

Advanced Intensity Measures for Probabilistic Seismic Demand Model of Nonstructural Components Considering the Effects of Earthquake (지진에 의한 영향을 고려한 비구조물 확률론적 내진응답모델링을 위한 향상된 지진강도)

  • Hur, Ji-eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.8-14
    • /
    • 2017
  • Nonstructural components, such as electrical equipment, have critical roles in the proper functionality of various infrastructure systems. Some of these devices in certain facilities should operate even under strong seismic shaking. However, it is challenging to define each mechanical and operational failure and determine system failure probabilities under seismic shaking due to the uncertainties in earthquake excitations and the diversity of electrical equipment, among other factors. Therefore, it is necessary to develop effective and practical probabilistic models for performance assessment of electrical equipment considering variations in equipment features and earthquakes. This study will enhance the understanding of the effect of rocking behavior on nonstructural equipment, and linear-to-nonlinear behavior of restrainers. In addition, this study will generate probabilistic seismic demand models of rigid equipment for a set of conventional and novel intensity measures.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Probabilistic analysis of seismically isolated elevated liquid storage tank using multi-phase friction bearing

  • Moeindarbari, Hesamaldin;Malekzadeh, Masoud;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.111-125
    • /
    • 2014
  • Multiple level performance of seismically isolated elevated storage tank isolated with multi-phase friction pendulum bearing is investigated under totally 60 records developed for multiple level seismic hazard analysis (SLE, DBE and MCE). Mathematical formulations involving complex time history analysis have been proposed for analysis of typical storage tank by multi-phase friction pendulum bearing. Multi-phase friction pendulum bearing represent a new generation of adaptive friction isolation system to control super-structure demand in different hazard levels. This isolator incorporates four concave surfaces and three independent pendulum mechanisms. Pendulum stages can be set to address specific response criteria for moderate, severe and very severe events. The advantages of a Triple Pendulum Bearing for seismic isolation of elevated storage tanks are explored. To study seismic performance of isolated elevated storage tank with multi-phase friction pendulum, analytical simulations were performed with different friction coefficients, pendulum radii and slider displacement capacities.

Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames

  • Choi, Hyunhoon;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.93-112
    • /
    • 2009
  • In this study seismic analyses of steel structures were carried out to examine the effect of ground motion characteristics and structural properties on energy demands using 100 earthquake ground motions recorded in different soil conditions, and the results were compared with those of previous works. Analysis results show that ductility ratios and the site conditions have significant influence on input energy. The ratio of hysteretic to input energy is considerably influenced by the ductility ratio and the strong motion duration. It is also observed that as the predominant periods of the input energy spectra are significantly larger than those of acceleration response spectra used in the strength design, the strength demand on a structure designed based on energy should be checked especially in short period structures. For that reason framed structures with buckling-restrained-braces (BRBs) were designed in such a way that all the input energy was dissipated by the hysteretic energy of the BRBs, and the results were compared with those designed by conventional strength-based design procedure.

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.

Seismic Demand on the Isolated Slab-on-Steel Girder Bridge in Low Temperature (면진된 합성형교의 저온에서의 내진 요구)

  • 김대곤;김석희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.379-386
    • /
    • 2002
  • The objective of this study is to investigate the seismic demand on the isolated slab-on-steel girder bridge under cold climate conditions. To this end comparative test results are presented of laminated elastomeric and lead-rubber seismic isolators in warm and cold temperature conditions. At extremely cold temperatures, rubber "glass-harden" and as a result rubber bearings that may be used for seating bridges behave in a significantly non-linear fashion. From the nonlinear time history analysis of the isolated slab-on-steel girder bridge, larger forces are transferred to the substructures. however smaller displacement at superstructure is obtained under cold climate conditions. These phenomenons might need to be considered in design stage of the seismically isolated bridges.

  • PDF