• 제목/요약/키워드: seismic data

Search Result 1,399, Processing Time 0.034 seconds

Integrated approach using well data and seismic attributes for reservoir characterization

  • Kim Ji- Yeong;Lim Jong-Se;Shin Sung-Ryul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.723-730
    • /
    • 2003
  • In general, well log and core data have been utilized for reservoir characterization. These well data can provide valuable information on reservoir properties with high vertical resolution at well locations. While the seismic surveys cover large areas of field but give only indirect features about reservoir properties. Therefore it is possible to estimate the reservoir properties guided by seismic data on entire area if a relationship of seismic data and well data can be defined. Seismic attributes calculated from seismic surveys contain the particular reservoir features, so that they should be extracted and used properly according to the purpose of study. The method to select the suitable seismic attributes among enormous ones is needed. The stepwise regression and fuzzy curve analysis based on fuzzy logics are used for selecting the best attributes. The relationship can be utilized to estimate reservoir properties derived from seismic attributes. This methodology is applied to a synthetic seismogram and a sonic log acquired from velocity model. Seismic attributes calculated from the seismic data are reflection strength, instantaneous phase, instantaneous frequency and pseudo sonic logging data as well as seismic trace. The fuzzy curve analysis is used for choosing the best seismic attributes compared to sonic log as well data, so that seismic trace, reflection strength, instantaneous frequency, and pseudo sonic logging data are selected. The relationship between the seismic attribute and well data is found out by the statistical regression method and estimates the reliable well data at a specific field location derived from only seismic attributes. For a future work in this study, the methodology should be checked an applicability of the real fields with more complex and various reservoir features.

  • PDF

Analysis of Regional Seismic Characters for Establishing Seismic Zone Factor (지역계수 설정을 위한 지역별 지진발생특성 분석)

  • Kwon, Ki-Hyuk;Hwang, Wan-Seon;Seo, Chee-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.1-8
    • /
    • 2006
  • The seismic zone factor is evaluated according to the regional characteristics of seismic response based on the historical and instrumental earthquake data. This study aims at arranging regional seismic characteristics by the analysis of earthquake data recorded in the Korean Peninsula and providing the fundamental data to be used for establishing seismic zone factor considering the domestic seismic characteristics. This paper provides the seismic characteristics in the Korean Peninsula according to the historical and instrumental records and then presents fundamental data for establishing seismic zone factors in domestic region.

Phase inversion of seismic data

  • Kim, Won-Sik;Shin, Chang-Soo;Park, Kun-Pil
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.459-463
    • /
    • 2003
  • Waveform inversion requires extracting a reliable low frequency content of seismic data for estimating of the low wave number velocity model. The low frequency content of the seismic data is usually discarded or neglected because of the band-limited response of the source and the receivers. In this study, however small the spectral of the low frequency seismic data is, we assume that it is possible to extract a reliable phase information of the low frequency from the seismic data and use it in waveform inversion. To this end, we exploit the frequency domain finite element modeling and source-receiver reciprocity to calculate the $Frech\`{e}t$ derivative of the phase of the seismic data with respect to the earth model parameter such as velocity, and then apply a damped least squares method to invert the phase of the seismic data. Through numerical example, we will attempt to demonstrate the feasibility of our method in estimating the correct velocity model for prestack depth migration.

  • PDF

A Study on the Presumption for Attenuation Relation by MT. O-dae earthquake data in Korea (오대산 지진자료에 의한 거리감쇠식 추정에 관한 연구)

  • Kwon, Ki-Hyuk;Hwang, Wan-Seon;Yu, Hye-Ran
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.33-36
    • /
    • 2008
  • In Korean Building Code 2005(KBC-2005), the Seismic Zone Factor is regulated by separating the seismic zone into two part. This seismic zone factor is not matched to regional seismic characteristics of our country because the factor is based on International Building Code 2000 (IBC-2000) of USA. This study inquiry for having a sufficient grasp of the seismic characteristics of south Korea region and appling for the seismic cope plan. We have collected and analyzed earthquake record happened in domestic region. There are two kinds of earthquake record. One is Historical earthquake data, another is Instrumental earthquake data. I used Instrumental earthquake record data which reliance is higher than historical earthquake data for proposing attenuation formulas by analyzing a correlation the epicenter and the distance.

  • PDF

Bayesian-based seismic margin assessment approach: Application to research reactor

  • Kwag, Shinyoung;Oh, Jinho;Lee, Jong-Min;Ryu, Jeong-Soo
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.653-663
    • /
    • 2017
  • A seismic margin assessment evaluates how much margin exists for the system under beyond design basis earthquake events. Specifically, the seismic margin for the entire system is evaluated by utilizing a systems analysis based on the sub-system and component seismic fragility data. Each seismic fragility curve is obtained by using empirical, experimental, and/or numerical simulation data. The systems analysis is generally performed by employing a fault tree analysis. However, the current practice has clear limitations in that it cannot deal with the uncertainties of basic components and accommodate the newly observed data. Therefore, in this paper, we present a Bayesian-based seismic margin assessment that is conducted using seismic fragility data and fault tree analysis including Bayesian inference. This proposed approach is first applied to the pooltype nuclear research reactor system for the quantitative evaluation of the seismic margin. The results show that the applied approach can allow updating by considering the newly available data/information at any level of the fault tree, and can identify critical scenarios modified due to new information. Also, given the seismic hazard information, this approach is further extended to the real-time risk evaluation. Thus, the proposed approach can finally be expected to solve the fundamental restrictions of the current method.

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis (탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구)

  • Jongpil Won;Jungkyun Shin;Jiho Ha;Hyunggu Jun
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.51-71
    • /
    • 2024
  • Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise (탄성파 자료 잡음 제거를 위한 비지도 학습 연구)

  • Kim, Sujeong;Jun, Hyunggu
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.2
    • /
    • pp.71-84
    • /
    • 2022
  • When acquiring seismic data, various types of simultaneously recorded seismic noise hinder accurate interpretation. Therefore, it is essential to attenuate this noise during the processing of seismic data and research on seismic noise attenuation. For this purpose, machine learning is extensively used. This study attempts to attenuate noise in prestack seismic data using unsupervised machine learning. Three unsupervised machine learning models, N2NUNET, PATCHUNET, and DDUL, are trained and applied to synthetic and field prestack seismic data to attenuate the noise and leave clean seismic data. The results are qualitatively and quantitatively analyzed and demonstrated that all three unsupervised learning models succeeded in removing seismic noise from both synthetic and field data. Of the three, the N2NUNET model performed the worst, and the PATCHUNET and DDUL models produced almost identical results, although the DDUL model performed slightly better.

Borehole Seismics: Review and Its Application to Civil Engineering (시추공 탄성파탐사 및 이의 토목공학적 응용)

  • Chang Hyun-Sam;Lim Hae-Ryong;Hong Jae-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.176-201
    • /
    • 1999
  • Principles, data acquisition, data processing of four frequently used borehole seismic methods, i.e., downhole seismic, vertical seismic profiling(VSP), crosshole seismic, and seismic tomography, are reviewed briefly. Field data examples are presented and their application to civil engineering area was also discussed.

  • PDF

Data Acquisition and Processing for Shallow Marine Seismic Survey by Using a PC (PC를 이용한 천해저 탄성파탐사 자료 취득 및 처리에 관한 연구)

  • 김진후;김현도
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.166-171
    • /
    • 2001
  • A digital seismic data acquisition and processing system using a PC has been developed in order to replace the analog data acquisition system of shallow marine seismic survey. An A/D converter that has 12bits of resolution and 225KHz of conversion rate was ued to acquire data, and a data acquisition software was developed as a Windows program which provides convenience of use. Raw data acquired at field has been saved to the hard-disk simultaneously. The signal to noise ratio, vertical and horizontal resolution could be improved by a digital data processing of the raw data. The digital processing of the raw data includss gain recovery, filtering, deconvolution, and muting. With the prediction deconvolution algorithm multiple reflections appearing on the shallow marine seismic section could be removed successfully.

  • PDF

A Study on Development of an Earthquake Ground-motion Database Based on the Korean National Seismic Network (국가지진관측망 기반 지진동 데이터베이스 개발 연구)

  • Choi, Sae-Woon;Rhie, Junkee;Lee, Sang-Hyun;Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • In order to improve the ground-motion prediction equation, which is an important factor in seismic hazard assessment, it is essential to obtain good quality seismic data for a region. The Korean Peninsula has an environment in which it is difficult to obtain strong ground motion data. However, because digital seismic observation networks have become denser since the mid-2000s and moderate earthquake events such as the Odaesan earthquake (Jan. 20, 2007, ML 4.8), the 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 5.8), and the Pohang earthquake (Nov. 15, 2017, ML 5.4) have occurred, some good empirical data on ground motion could have been accumulated. In this study, we tried to build a ground motion database that can be used for the development of the ground motion attenuation equation by collecting seismic data accumulated since the 2000s. The database was constructed in the form of a flat file with RotD50 peak ground acceleration, 5% damped pseudo-spectral acceleration, and meta information related to hypocenter, path, site, and data processing. The seismic data used were the velocity and accelerogram data for events over ML 3.0 observed between 2003 and 2019 by the Korean National Seismic Network administered by the Korea Meteorological Administration. The final flat file contains 10,795 ground motion data items for 141 events. Although this study focuses mainly on organizing earthquake ground-motion waveforms and their data processing, it is thought that the study will contribute to reducing uncertainty in evaluating seismic hazard in the Korean Peninsula if detailed information about epicenters and stations is supplemented in the future.