• Title/Summary/Keyword: seismic damage evaluation system

Search Result 110, Processing Time 0.024 seconds

Seismic performance and damage evaluation of concrete-encased CFST composite columns subjected to different loading systems

  • Xiaojun Ke;Haibin Wei;Linjie Yang;Jin An
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.121-134
    • /
    • 2023
  • This paper tested 11 concrete-encased concrete-filled steel tube (CFST) composite columns and one reinforced concrete column under combined axial compression and lateral loads. The primary parameters, including the loading system, axial compression ratio, volume stirrup ratio, diameter-to-thickness ratio of the steel tube, and stirrup form, were varied. The influence of the parameters on the failure mode, strength, ductility, energy dissipation, strength degradation, and damage evolution of the composite columns were revealed. Moreover, a two-parameter nonlinear seismic damage model for composite columns was established, which can reflect the degree and development process of the seismic damage. In addition, the relationships among the inter-story drift ratio, damage index and seismic performance level of composite columns were established to provide a theoretical basis for seismic performance design and damage assessments.

Development of Seismic Damage Evaluation factor of Reinforced Concrete Pier for Fragility Analysis (취약도 해석을 위한 철근콘크리트 교각의 지진손상 평가인자 결정)

  • 고현무;이지호;강중원;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.308-315
    • /
    • 2002
  • Fragility analysis is widely used for the seismic safety evaluation of a structure. In fragility analysis, damage evaluation is a crucial factor. Most of the present fragility analyses use the representative responses such as displacement and absorbed hysteretic energy as a tool of damage evaluation. But damage evaluation method that can represent the local damage of a structure is required in the case of piers of which the local damage can cause the whole failure of bridge system. Therefore this study proposes a damage index, which can represent the distribution and magnitude of local damage by using the Lee and Fenves'plastic-damage model. Using the proposed damage index, fragility curves and damage probability matrix of pier are produced and fragility analysis is performed.

  • PDF

Development of the System for Damage Assessment of Road Network after Seismic Excitation (지진 발생 후 도로망의 피해 산정을 위한 평가체계 개발)

  • Yi Jin-Hoon;Lee Hyeong-Cheol;Jeong Dong-Gyun;Lee Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.216-221
    • /
    • 2006
  • This study provides a methodology for development of the Seismic Damage Evaluation System (SDES) in Korea. Major systems and status of database related to road networks in Korea are investigated to analyze the usability of the required information for developing the SDES. In this study, the SDES is composed of four components that are the road network component, the ground motion component, the fragile structure component, and the cost component. In addition, the procedures for the construction of database which support the SDES is proposed, and a prototype of the SDES for expressway of Korea is developed based on the developed methodology. The National Geospatial Information System (NGIS) and the National Earthquake Information System (NEIS) are used to develop the road network component and ground motion component, respectively. For the fragile structure component and the cost component, Highway Bridge Management System (HEMS) was used.

  • PDF

Development of Seismic Safety Evaluation Indices for Dual-Plane, Cable-stayed Bridges With H-type Pylons (H형 주탑 2면 사장교의 지진 안전성 평가지표 개발)

  • Chimedsuren, Solongo;An, Hyo Joon;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.261-268
    • /
    • 2019
  • This paper proposes damage indices efficient on evaluating the seismic safety of cable-stayed bridges, especially dual-plane, cable-stayed bridges with H-type pylons. The research assumes that the location of accelerometers is already defined as given in the 2017 Ministry of the Interior and Safety (MOIS) guideline. In other words, the paper does not attempt to suggest optimal sensor location for the seismic safety evaluation of cable-stayed bridges. The proposed damage indices are based on those for building structures widely applied in the field already. Those include changes in natural frequencies and changes in relative lateral displacements. In addition, the study proposes other efficient damage indices as the rotation changes at the top of pylons and in the midspan of the girder system. Sensitivity analysis for various damage indices is performed through dynamic analysis using selected earthquake ground motions. The paper compares the effectiveness of the damage indices.

Seismic Fragility Evaluation for Railway Bridge Structures using Results of a Safety Factor (철도교의 지진취약도 함수 도출을 위한 안전율평가 결과 이용)

  • Kim, Min-Kyu;Hahm, Dae-Gi;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This study is an evaluation of seismic fragility function using the HAZUS program for railway bridge systems, based on the results of previous research on seismic safety factor. First, a fragility function for each of the bridge members was evaluated according to the damage criteria and failure mode. Subsequently, bridge system fragility was evaluated using a fault tree to describe damage status. Finally, a fragility evaluation method for the bridge system was developed, based on the safety factor derived from the previous research.

Triaxial Shake Table Test about Seismic Performance of Ceiling System with Gypsum Panels (석고 패널이 부착된 천장 시스템의 내진성능 평가를 위한 3축 진동실험)

  • Park, Hae-Yong;Jeon, Bub-Gyu;Kim, Jae-Bong;Gim, Min-Uk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.143-153
    • /
    • 2019
  • In this study, a full scale 3-axes shake table test for M-bar and T-bar type ceilings commonly used in the country was conducted. Through damage inspection during the test, seismic performance of ceilings according to variables, such as clearance between wall mold and ceiling as well as existence of facilities, was evaluated. A test frame consisted of square hollow section members was used for the shake table test. The experimental method was performed as a fragility test using required response spectrum described in ICC-ES AC156. In the case of architectural nonstructural component that contain ceilings, it mainly is evaluated the performance by post-test visual inspection. For the evaluation of seismic performance of ceilings, this study classified and defined damaged items for targeted ceiling system referring to illustrative damage according to nonstructural performance levels accordance with ASCE 41 and previous studies. And proposed illustrative damage items classification was utilized to compare the degree of the damage according to experimental variables. The experiment results confirmed that differences in boundary conditions due to the clearance at wall mold and the installation of facilities had a significant effect on the seismic performance of the ceiling.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

Seismic Risk Evaluation of Isolated Emergency Diesel Generator System (면진된 비상디젤발전기의 지진위험도 평가)

  • Kim, Min-Kyu;Ohtori, Yasuki;Choun, Young-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.217-222
    • /
    • 2007
  • An Emergency Diesel Generator (EDG) is one of the safety related equipments of a Nuclear Power Plant. The seismic capacity of an EDG in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to a pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. This study introduces a seismic risk analysis method and presents sample results about the seismically isolated and conventional EDG system.

  • PDF

Effects of Bearing Damage on Bridge Seismic Responses (교량시스템의 지진응답특성에 미치는 받침손상의 영향)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.287-294
    • /
    • 2001
  • Dynamic responses of multi-span simply supported bridges are investigated to examine the effect of damaged bearings under seismic excitations. The damaged bearings are modeled as sliding elements with friction between the super-structure and the pier top. Various values of the friction coefficients for damaged bearings are examined with increasing magnitudes of peak ground accelerations. It is found that the g1oba1 seismic behaviors are significantly influenced by the occurrence of bearing damage. It should be noticed that the most possible location of unseating failure of superstructures differs with that in the model without consideration of the bearing damage. It can be concluded that the bearing damage may play the major role in the unseating failure of a bridge system, so that the damage of bearings should be included to achieve more rational seismic safety evaluation.

  • PDF

Expected damage for SDOF systems in soft soil sites: an energy-based approach

  • Quinde, Pablo;Reinoso, Eduardo;Teran-Gilmore, Amador;Ramos, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.577-590
    • /
    • 2019
  • The seismic response of structures to strong ground motions is a complex problem that has been studied for decades. However, most of current seismic regulations do not assess the potential level of damage that a structure may undergo during a strong earthquake. This will happen in spite that the design objectives for any structural system are formulated in terms of acceptable levels of damage. In this article, we analyze the expected damage in single-degree-of-freedom systems subjected to long-duration ground motions generated in soft soil sites, such as those located in the lakebed of Mexico City. An energy-based methodology is formulated, under the consideration of input energy as the basis for the evaluation process, to estimate expected damage. The results of the proposed methodology are validated with damage curves established directly with nonlinear dynamic analyses.