• Title/Summary/Keyword: seismic coefficient

Search Result 304, Processing Time 0.028 seconds

Seismic Response Analysis of Multi-story Structures by the Transfer Stiffness Coefficient Method (전달강성계수법에 의한 다층구조물의 지진응답해석)

  • 문덕홍;강현석;최명수;김성진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.793-798
    • /
    • 2001
  • This paper is basic study of seismic response analysis for the large scaled structures subjected to seismic loading. The authors propose seismic response analysis algorithm for the multi-story structures, which are subjected to ground acceleration. This analysis method is derived from an combination of the transfer stiffness coefficient method(TSCM) and Newmark method. Numerical computation is performed for simple multi-story structures acting on an arbitrary ground acceleration. Numerical results by the TSCM which is applied to the various strong ground motion are compared with results by central difference method and Runge- Kutta method.

  • PDF

Evaluation of the Application and Analysis Method at Seismic Design of Dam (댐의 내진설계시 해석방법과 그 적용성 평가)

  • Hwang, Seong-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4239-4249
    • /
    • 2011
  • In the country with frequent earthquakes like Japan, resistance to earthquake is assessed on the basis that Dam body's Face slab is destroyed by concentrated stress. In our country this kind of modeling and analysis is not yet definitely established. This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo-static analysis and frequency domain response analysis, time domain history analysis of dinamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

Seismic Performance Evaluation of Vibration Attenuation Wireway-Pulley System Using the FE Analysis (유한요소해석을 통한 진동 감쇠형 와이어웨이시스템의 내진성능 검증)

  • Tran, V. Han;Jin, Su Min;Kim, Sung Chan;Cha, Ji Hyun;Shin, Jiuk;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.185-192
    • /
    • 2020
  • A new lighting support structure composing of two-way wires and pulley, a pulley-type wireway system, was developed to improve the seismic performance of a ceiling type lighting equipment. This study verifies the seismic performance of the pulley-type wireway system using a numerical approach. A theoretical model fitted to the physical features of the newly-developed system was proposed, and it was utilized to compute a frictional coefficient between the wire and pulley sections under tension forces. The frictional coefficient was implemented to a finite element model representing the pulley-type wireway system. Using the numerical model, the seismic responses of the pulley-type wireway system were compared to those of the existing lighting support structure, a one-way wire system. The addition of the pulley component resulted in the increasement of energy absorption capacity as well as friction effect and showed in significant reduction in maximum displacement and oscillation after the peak responses. Thus, the newly-developed wireway system can minimize earthquake-induced vibration and damage on electric equipment.

Fragility Curve Evaluation of Reinforced Concrete Shear Wall Structures according to Various Nonlinear Seismic Analysis Methods (다양한 비선형지진해석방법에 따른 철근콘크리트 전단벽 구조물의 취약도곡선 평가)

  • Jang, Dong-Hui;Song, Jong-Keol;Kang, Sung-Lib;Park, Chang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2011
  • Seismic fragility analysis has been developed to evaluate the seismic performance of existing nuclear power plants, but now its applicability has been extended to buildings and bridges. In general, the seismic fragility curves are evaluated from the nonlinear time-history analysis (THA) using many earthquake ground motions. Seismic fragility analysis using the nonlinear THA requires a time consuming process of structural modeling and analysis. To overcome this shortcoming of the nonlinear THA, simplified methods such as the displacement coefficient method (DCM) and the capacity spectrum method (CSM) are used for the seismic fragility analysis. In order to evaluate the accuracy of the seismic fragility curve calculated by the DCM and the CSM, the seismic fragility curves of a reinforced concrete shear wall structure calculated by the DCM and CSM are compared with those calculated by the nonlinear THA. In order to construct a numerical fragility curve, 190 artificially generated ground motions corresponding to the design spectrum and the methodology proposed by Shinozuka et al. are used.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

Evaluating contradictory relationship between floor rotation and torsional irregularity coefficient under varying orientations of ground motion

  • Zhang, Chunwei;Alam, Zeshan;Samali, Bijan
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1027-1041
    • /
    • 2016
  • Different incident angles of ground motions have been considered to evaluate the relationship between floor rotation and torsional irregularity coefficient. The issues specifically addressed are (1) variability in torsional irregularity coefficient and floor rotations with varying incident angles of ground motion (2) contradictory relationship between floor rotation and torsional irregularity coefficient. To explore the stated issues, an evaluation based on relative variation in seismic response quantities of linear asymmetric structure under the influence of horizontal bi-directional excitation with varying seismic orientations has been carried out using response history analysis. Several typical earthquake records are applied to the structure to demonstrate the relative variations of floor rotation and torsional irregularity coefficient for different seismic orientations. It is demonstrated that (1) Torsional irregularity coefficient (TIC) increases as the story number decreases when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, TIC either decreases as the story number decreases or there is no specific trend for TIC. Floor rotation increases in proportion to the story number when the ground motion is considered along reference axes of structure. For incident angles other than structure's reference axes, floor rotation either decreases as the story number increases or there is no specific trend for floor rotation and (2) TIC and floor rotation seems to be approximately inversely proportional to each other when the ground motion is considered along reference axes of the structure. For incident angles other than structure's reference axes, the relationship can even become directly proportional instead of inversely proportional.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Seismic Response Analysis of the Center-Core Rockfill Dam (중심코아령사력댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.139-146
    • /
    • 2001
  • The seismic safety analysis were performed for the center-core rockfill dam(CCRD) The static and pseudo-static FEM analysis using seismic coefficient Method, and dynamic FEM analysis using Hachinohe earthquake wave(0.12g) were used for the seismic safety of CCRD. The results of seismic analysis were that the factor of safety of down slope was 1.5, horizontal displacement is about 14.3cm, and vertical displacement is 3.3cm at dam creast. The model dam did not show any seismic stability problems for 0.12g. And much more research is still necessary in seismic safety of CCRD.

  • PDF

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.