• Title/Summary/Keyword: seismic coefficient

Search Result 303, Processing Time 0.035 seconds

Development of the Modified Seismic Coefficient Method to Establish Seismic Design Criteria of Buried Box Structures. (BOX 형 지하구조물의 내진설계 기준 확립을 위한 해석기법개발)

  • 박성우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.194-201
    • /
    • 2000
  • In this study the modified seismic coefficient method for seismic analysis of buried box structures is developed for practical purpose. The loading coefficient in the modified seismic coefficient method is determined from the results of the response displacement analysis. In the developed method adequate velocity response spectrum in accordance with soil condition is also needed to seismic design of buried box structures, In order to investigate applicability of the modified seismic coefficient method various analyses are performed with different parameters such as depth of base rock height and width of box buried depth and value of standard penetration test. Results from the modified seismic coefficient method are compared with those of the response displacement method in terms of the maximum bending moment and the location of it. From the comparison it is shown that the feasibility of the modified seismic coefficient method for seismic analysis of buried box structures.

  • PDF

The Evaluation of Seismic Performance on the Concrete Dam of Analysis Method (해석방법에 따른 콘크리트댐의 내진성능평가)

  • 임정열;이종욱;오병현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • The seismic design of the domestic concrete dams has done by seismic coefficient method considering inertia force, but this method has defect not reflect dynamic properties, as a conservative design method. Therefore, it is necessary for seismic design of dam to consider dynamic properties. Also, concrete dam evaluation of seismic performance has done by seismic coefficient method - in fact, it may done by dynamic analysis - that has many problems when applied to the domestic criteria. This study make a comparative analysis for result from seismic design and evaluation of seismic performance by seismic coefficient method, modified seismic coefficient method, and dynamic analysis method.

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Numerical Analysis for Buried Box Structures during Earthquake (지중 박스구조물의 지진시 거동 해석)

  • 박성진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.108-115
    • /
    • 2000
  • Numerical analysis of slop stability is presented using seismic displacement, response seismic coefficient, and earthquake response analysis methods. In seismic displacement and response seismic coefficient methods, horizontal static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis Hahinoha-wave is applied, It is found from result that analysis using response seismic coefficient method is much more conservative than that using seismic displacement method Also, analysis result using earthquake response analysis method is somewhat less conservative about 25% when compared with that using seismic displacement method.

  • PDF

Analysis of Seismic Response Coefficient by Fundamental Period using Geographic Information System (GIS를 이용한 고유주기에 따른 지진응답계수 분석)

  • Seo, Eun-Su;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Response of buildings under seismic load is different according to fundamental period. It is provided in Korean Building Code(KBC2009) seismic response coefficient by fundamental period for seismic design of buildings. Recently, many researchers have studied on fundamental period and seismic response coefficient. However, studies on seismic design using Geographic Information System(GIS) are not sufficient. Therefore, this paper has analyzed on seismic response coefficient of buildings using ArcGIS. This paper can be evaluated efficiently for seismic analysis of structures. And this study will be used as basics of a reasonable seismic design using Geographic Information Systems(GIS).

Seismic Performance Evaluation of Seismically Isolated Nuclear Power Plants Considering Various Velocity-Dependent Friction Coefficient of Friction Pendulum System (마찰진자시스템의 마찰계수 변화에 따른 면진된 원전구조물의 거동특성 비교)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-134
    • /
    • 2016
  • In order to improve seismic safety of nuclear power plant (NPP) structures in high seismicity area, seismic isolation system can be adapted. In this study, friction pendulum system (FPS) is used as the seismic isolation system. According to Coulomb's friction theory, friction coefficient is constant regardless of bearing pressure and sliding velocity. However, friction coefficient under actual situation can be changed according to bearing pressure, sliding velocity and temperature. Seismic responses of friction pendulum system with constant friction and various velocity-dependent friction are compared. The velocity-dependent friction coefficients of FPS are varied between low-and fast-velocity friction coefficients according to sliding velocity. From the results of seismic analysis of FPS with various cases of friction coefficient, it can be observed that the yield force of FPS becomes larger as the fast-velocity friction coefficient becomes larger. Also, the displacement response of FPS becomes smaller as the fast-velocity coefficient becomes larger.

A Study on the Development of a Stability Chart for Yield Seismic Coefficient of Soil Slope Using Limit Analysis (한계해석을 이용한 토사면의 항복지진계수 산정도표 제안 연구)

  • Choi, Sang-Ho;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.47-57
    • /
    • 2010
  • Yield seismic coefficient plays an important role in the estimation of permanent displacement of a soil slope subjected to earthquake using Newmark's sliding block theory. However, yield seismic coefficients currently used in practices are not mechanically rigorous since most of them are estimated using limit equilibrium methods considering equilibrium condition only. Therefore, estimation of permanent displacement of a soil slope based on existing yield seismic coefficient may cause problems. Limit analysis estimating the range of mechanically rigorous solution is thought to be effective in evaluating the validity of existing yield seismic coefficient. In this study, a simple stability chart for yield seismic coefficient useful in practices is proposed by considering various slope conditions including stability number, slope inclination, strength parameters, etc.

Infinite Slope Stability to Analyze the Effects of Rainfall and Vertical Seismic Coefficient in Limestone Area (강우와 연직 지진계수의 영향도 분석을 위한 석회암지역의 무한사면 안정해석)

  • Moon, Seong-Woo;Kim, Hyeong-Sin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • In Korea, there are many regulations and cases for horizontal seismic coefficient to pseudo-static analysis of slope, but there are insufficient regulations and cases for vertical seismic coefficient. Therefore, geological investigation and laboratory tests were conducted to analyze the effect of the vertical seismic coefficient on slope stability, and pseudo-static analyses based on infinite slope stability analysis were performed by using those results. As a result, if the earthquake magnitude is less than M 5.0, the effect of the vertical seismic coefficient is not significant, and if the earthquake magnitude is more than M 6.0, the vertical seismic coefficient largely increases the unstable areas of Fs ≤ 1.1. These tendency is more distinct in rainfall condition than without rainfall condition.

A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient (지진계수를 고려한 제방의 사면안정에 관한 연구)

  • 강우묵;지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

A study on the coefficients of variation of seismic load effect for the limit state design of shield tunnel based on the reliability analysis (신뢰성 기반 쉴드 터널의 한계상태설계를 위한 지진하중 효과의 변동계수에 관한 연구)

  • Park, Young-Bin;Kim, Do;Byun, Yosep;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.311-321
    • /
    • 2020
  • In this study, coefficient of variation for the seismic load effect on the segment lining was calculated. The statistical characteristics of the soil property were analyzed for the probability characteristics of domestic soil. In order to calculate the coefficient of variation for the seismic load effect, the MCS technique was applied, and the closed-form equation was applied to calculate the seismic load effect. As a result of calculating the coefficient of variation, the coefficient of variation of the seismic load effect on the weathered soil was analyzed in the range of 0.06~0.15, and the coefficient of variation was judged to be used as basic data for designing the limit state of the shield tunnel on seismic condition.