• 제목/요약/키워드: seismic code

검색결과 672건 처리시간 0.035초

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.

Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake

  • Mehani, Youcef;Bechtoula, Hakim;Kibboua, Abderrahmane;Naili, Mounir
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.791-808
    • /
    • 2013
  • The main purpose of this paper is to develop seismic fragility curves for existing reinforced concrete, RC, buildings based on the post earthquake field survey and the seismic performance using capacity design. Existing RC buildings constitute approximately 65% of the total stock in Algiers. This type of buildings, RC, was widely used in the past and chosen as the structural type for the future construction program of more than 2 millions apartments all over Algeria. These buildings, suffered moderate to extensive damage after the 2003 Boumerdes earthquake, on May 21st. The determination of analytical seismic fragility curves for low-rise and mid-rise existing RC buildings was carried out based on the consistent and complete post earthquake survey after that event. The information on the damaged existing RC buildings was investigated and evaluated by experts. Thirty four (34) communes (districts) of fifty seven (57), the most populated and affected by earthquake damage were considered in this study. Utilizing the field observed damage data and the Japanese Seismic Index Methodology, based on the capacity design method. Seismic fragility curves were developed for those buildings with a large number data in order to get a statistically significant sample size. According to the construction period and the code design, four types of existing RC buildings were considered. Buildings designed with pre-code (very poor structural behavior before 1955), Buildings designed with low code (poor structural behavior, between 1955-1981), buildings designed with medium code (moderate structural behavior, between 1981-1999) and buildings designed with high code (good structural behavior, after 1999).

소방시설 내진설계의 필요성과 기준정비에 관한 연구 (The Study on the Necessity of Seismic Design for Fire Protection System and the Establishment of Standard)

  • 신이철;한병찬;박선규;이현진;권영진
    • 한국화재소방학회논문지
    • /
    • 제23권2호
    • /
    • pp.6-12
    • /
    • 2009
  • 최근 세계적으로 대규모 지진들이 발생하고 있다. 이러한 지진의 피해는 진동에 의한 피해보다 지진으로 소방시설이 기능을 상실하여 전기 및 가스설비의 파손으로 발생하는 화재를 진압하지 못한 2차적 피해가 더 크다. 따라서 현재 우리나라의 지진 발생 추이를 확인할 필요가 있다. 본 연구에서는 미국과 일본의 소방시설의 지진피해 사례 및 내진설계기준을 분석 하였으며, 우리나라와 유사한 미국의 기준과 비교한 결과 소방시설 내진설계기준의 적용범위가 우리나라의 건축 구조물의 특성에 매우 비효율적인 것으로 나타났다. 이에 따라 국내 현실을 감안하여 적용범위를 설정하도록 제안하였다.

Comparison of the seismic performance of existing RC buildings designed to different codes

  • Zeris, Christos A.;Repapis, Constantinos C.
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.505-523
    • /
    • 2018
  • Static pushover analyses of typical existing reinforced concrete frames, designed according to the previous generations of design codes in Greece, have established these structures' inelastic characteristics, namely overstrength, global ductility capacity and available behaviour factor q, under planar response. These were compared with the corresponding demands at the collapse limit state target performance point. The building stock considered accounted for the typical variability, among different generations of constructed buildings in Greece, in the form, the seismic design code in effect and the material characteristics. These static pushover analyses are extended, in the present study, in the time history domain. Consequently, the static analysis predictions are compared with Incremental Dynamic Analysis results herein, using a large number of spectrum compatible recorded base excitations of recent destructive earthquakes in Greece and abroad, following, for comparison, similar conventional limiting failure criteria as before. It is shown that the buildings constructed in the 70s exhibit the least desirable behaviour, followed by the buildings constructed in the 60s. As the seismic codes evolved, there is a notable improvement for buildings of the 80s, when the seismic code introduced end member confinement and the requirement for a joint capacity criterion. Finally, buildings of the 90s, designed to modern codes exhibit an exceptionally good performance, as expected by the compliance of this code to currently enforced seismic provisions worldwide.

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

Seismic force evaluation of RC shear wall buildings as per international codes

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.191-209
    • /
    • 2016
  • Seismic codes are the best available guidance on how structures should be designed and constructed to ensure adequate resistance to seismic forces during earthquakes. Seismic provisions of Indian standard code, International building code and European code are applied for buildings with ordinary moment resisting frames and reinforced shear walls at various locations considering the effect of site soil conditions. The study investigates the differences in spectral acceleration coefficient ($S_a/g$), base shear and storey shear obtained following the seismic provisions in different codes in the analysis of these buildings. Study shows that the provision of shear walls at core in low rise buildings and at all the four corners in high rise buildings gives the least value of base shear.

동일한 지진구역에 위치한 건축 구조물의 내진거동을 기초로한 기존 내진설계 평가 (Evaluation of the Current Seismic Design Procedures Based on the Seismic Performance of the Building Located in the Same Seismic Area)

  • 한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.160-166
    • /
    • 1997
  • Current Seismic Design Procedure has been developed and improved mostly based on the experiences of the past earthquakes. Many engineers and researchers believe that the seismic codes and provisions are adequate for the basic objective of the code which is "life-safe". However they doubt the performance of the structure during the earthquake. The seismic code seems the black box for the designers which means it is not transparent since the designer can not predict the level of the damage of the structure under future earthquakes. This purpose of this study is to check the validity of the current seismic design procedures. Two structures with different heights are designed and their seismic performances are evaluated for this purpose. Both structures are assumed to be located at the same strong seismic zone.

  • PDF

Seismic performance of RC buildings subjected to past earthquakes in Turkey

  • Inel, Mehmet;Meral, Emrah
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.483-503
    • /
    • 2016
  • This study aims to evaluate seismic performance of existing low and mid-rise reinforced concrete buildings by comparing their displacement capacities and displacement demands under selected ground motions experienced in Turkey as well as demand spectrum provided in 2007 Turkish Earthquake Code for design earthquake with 10% probability of exceedance in 50 years for soil class Z3. It should be noted that typical residential buildings are designed according to demand spectrum of 10% probability of exceedance in 50 years. Three RC building sets as 2-, 4- and 7-story, are selected to represent reference low-and mid-rise buildings located in the high seismicity region of Turkey. The selected buildings are typical beam-column RC frame buildings with no shear walls. The outcomes of detailed field and archive investigation including approximately 500 real residential RC buildings established building models to reflect existing building stock. Total of 72 3-D building models are constructed from the reference buildings to include the effects of some properties such as structural irregularities, concrete strength, seismic codes, structural deficiencies, transverse reinforcement detailing, and number of story on seismic performance of low and mid-rise RC buildings. Capacity curves of building sets are obtained by nonlinear static analyses conducted in two principal directions, resulting in 144 models. The inelastic dynamic characteristics are represented by "equivalent" Single-Degree-of- Freedom (ESDOF) systems using obtained capacity curves of buildings. Nonlinear time history analysis is used to estimate displacement demands of representative building models idealized with (ESDOF) systems subjected to the selected ground motion records from past earthquakes in Turkey. The results show that the significant number of pre-modern code 4- and 7-story buildings exceeds LS performance level while the modern code 4- and 7-story buildings have better performances. The findings obviously indicate the existence of destructive earthquakes especially for 4- and 7-story buildings. Significant improvements in the performance of the buildings per modern code are also obvious in the study. Almost one third of pre-modern code buildings is exceeding LS level during records in the past earthquakes. This observation also supports the building damages experienced in the past earthquake events in Turkey.

횡방향철근 상세에 따른 원형기둥의 내진성능 (Seismic Performance of Circular Columns considering Transverse Steel Details)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.259-266
    • /
    • 2000
  • This study was conducted to investigate the seismic behavior assessment of circular reinforcement concrete bridge piers particularly with regard to assessing the displacement ductility curvature ductility response modification factor(R) and plastic hinge region etc, The experimental variables of bridge piers test consisted of transverse steel details amount and spacing different axial load levels etc. The test results indicated that reinforcement concrete bridge piers with confinement steel by the code specification exhibited suffcient ductile behavior and seismic performance. Also it is found that current seismic design code specification of confinement steel requirements may be revised.

  • PDF

KBC 2005 내진설계 주요 개정사항 (Significant Changes in the Seismic Design Provisions of the 2005 KBC)

  • 정광량;유병억
    • 기술사
    • /
    • 제38권5호
    • /
    • pp.5-9
    • /
    • 2005
  • The seismic design provisions of the 2005 KBC has been based on the 2000 IBC and has considered the building code situations in Korea. There are site ground motion, soil class, seismic design category in the significant changes of the 2005 KBC. In the case of soft soil condition, the response spectrum acceleration of the 2005 KBC is larger than that of previous code. To reduce the seismic force of the 2005 KBC, it need to introduce the eqrthauke force resisting system with high ductility.

  • PDF