• Title/Summary/Keyword: seismic applicability

Search Result 236, Processing Time 0.03 seconds

Development of a GUI Crosswell Seismic Tomography Software on Linux (리눅스용 GUI 시추공 탄성파 토모그래피 프로그램 개발)

  • Sheen Dong-Hoon;Ko Kwang Beom;Park Jae-Woo;Ji Jun;Lee Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.150-156
    • /
    • 2002
  • In this study, a software for crosswell seismic tomography is developed. The software consists of first arrival picking and adjusting module, crosswell traveltime tomography module, and imaging module. This software allows saying the picked first arrival times into the header of seismic data, and using this data directly to the input of crosswell seismic tomography. With an imaging module, velocity structures and ray path can be imaged directly from the output of the tomography module. Because it is developed on the basis of the SU under the Linux and the GUI environment for user, this software can be carried out directly the first arrival picking, inversion and tomogram for crosswell tomography data in the field. Therefore, this software can be improved the applicability of site investigation by tomography method.

Engineering Impact Assessment of the Site Coefficients In the Current Highway Bridge Code of Korea (현행 도로교시방서의 지반계수에 대한 공학적 영향평가)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.89-97
    • /
    • 1998
  • This study is intended to investigate the seismic responses of bridge structures considering site effects. The site effects in the seismic analysis of bridge structures were classified into two parts. At first, the seismic responses of the structures on each "soil profile types" of the code were evaluated in accordance with code-specified method and compared with results of time-history analysis method. And next, as a second stage of the study, the responses of the two different soil with considerably different soil properties, even though they are classified to the same "soil profile types" of the code, were evaluated and compared each other. The first part of study is purposed to evaluate the applicability of code-specified method, while the other part is purposed to find the variance of the seismic responses from the different soil sites in the same soil profile types of the code. For the analysis, two major methods of the code, single-mode spectral anaysis and multi-mode spectral analysis, were used and the time-history analysis method which is expected to give more accurate responses was also used for the comparison purposes. For the time-history analysis, time-domain analysis technique of the lumped-mass model with frequency-independent soil springs and dampers was adopted and artificially generated spectra of the code was used as input motion. As the results of the study, the code specified methods for the seismic responses considering the site effects were verified to give the results in conservative side for the most of the cases. However, for the structures on the site with considerable flexibility, the responses of the bridge girders or deckplates by the code methods both in section forces and horizontal movement responses, may have much smaller values than the actual responses. Therefore, more detailed analysis considering the flexibility of the base soil may be required to have more reasonable results in girder responses.in girder responses.

  • PDF

Seismic Response Analysis Method for 2-D Linear Soil-Structure Systemsusing Finite and Infinite Elements (유한요소와 무한요소를 사용한 2차원 선형 지반-구조물계의 지진응답해석법)

  • 김재민;윤정방;김두기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.231-244
    • /
    • 2000
  • This paper presents a dynamic analysis technique for a 2-D soil-structure interaction problem in the frequency domain, which can directly be applied as an analysis tool for seismic response analyses of underground structures, tunnels, embankments, and so on. In this method, the structure and near-field soil is modeled by the standard finite elements, while the unbounded far-field soil is represented using the dynamic infinite elements in the frequency domain. The earthquake-input motion is regarded as traveling P and SV waves which are incident vertically from the far-field of underlying half-space to the near-field of layered medium. The equivalent earthquake forces are then calculated utilizing so-called fixed-exterior-boundary-method and the free-field responses including displacements and tractions. For the verification of the present study, seismic response analyses are carried out for a multi-layered half-space free-field soil medium and a cylindrical cavity embedded in a homogeneous half-space. Comparisons of the present results with solutions by other approaches indicate that the proposed methodology gives accurate estimates. Finally, an application example of seismic response analysis for a subway station is presented, which demonstrates the applicability of the present study.

  • PDF

Application and Verification of Liquefaction Potential Index in Liquefaction Potential Assessment of Korean Port and Harbor (국내 항만 및 어항시설의 액상화 평가에 있어서 액상화 가능성 지수의 적용성 검토)

  • Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.33-46
    • /
    • 2021
  • After the Gyeongju earthquake, which was the largest in the history of measuring instruments in Korea in 2016, and after the Pohang earthquake, where the pillars of pallet structures were destroyed in 2017, the seismic design standards for all domestic facilities have been revised and supplemented. In particular, during the investigation of the Pohang Earthquake damage cases, liquefaction damage that occurs mainly in countries with strong earthquakes such as the United States, Japan, and New Zealand was found, so studies are being conducted in depth to improve seismic design standards. In this study, the liquefaction potential assessment in the recently revised seismic design standard for port and harbor was reviewed, and an applicability review was conducted focusing on the newly cited liquefaction potential index (LPI). At this time, by varying the thickness and location of the sandy soil where liquefaction can occur, the LPIs for various cases were calculated and compared. Also, 22 LPI values in the practical port area were compared and reviewed along with performance of the liquefaction assessment based on the site response analysis using the boring-hole data of the actual 22 port sites.

Construction of Efficient Downhole Seismic Testing System by the Round Robin Test (상호검증시험을 통한 효율적인 다운홀 탄성파 기법 수행 시스템의 구성)

  • Bang, Eun-Seok;Kim, Ki-Seog;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.133-147
    • /
    • 2007
  • Downhole seismic method is very economic and easy of operation because it uses only one borehole and simple surface source to obtain the shear wave velocity ($V_s$) profile of a site. Even though it is widely used by the site investigation companies, universities and institutes, however, the $V_s$ profile determined by downhole seismic method has often low reliability due to employment of wrong combinations of field losing equipment and interpretation method and deficiency of experience. Round robin test was performed and testing equipment and procedure were compared. Adequate downhole seismic testing equipment was constructed based on the comparison and verification study of the round robin test. The data acquisition and software interpretation were also developed for automation and quick test in field. Finally, the effectiveness and applicability were verified through the field test by using the constructed testing system.

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part I: Application and Verification of a Novel Probabilistic Seismic Hazard Analysis Procedure (신(新) 확률론적 지진재해분석 및 국내 지진계수 개발 Part I: 신(新) 확률론적 지진재해분석 기법 적용 및 검증)

  • Park, Duhee;Kwak, Dong-Yeop;Jeong, Chang-Gyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.103-109
    • /
    • 2009
  • The probabilistic seismic hazard analysis (PSHA) calculates the probability of exceedance of a certain ground motion parameter within a finite period at a site of interest. PSHA is very robust in that it can account for the uncertainties in seismic source, wave passage effect, and seismic site effects and hence, it is the most widely used method in quantifying the future earthquake induced ground vibration. This paper evaluates the applicability of a new PSHA that is alleged to be able to reproduce the results of a conventional PSHA method, but generates a series of earthquake scenarios and corresponding ground motion time histories that are compatible with the scenarios. In the application, a 40,000 year period is simulated, during which 16,738 virtual earthquakes have occurred. The seismic hazard maps are generated from the outputs of the new PSHA. Comparisons with the maps generated by the conventional PSHA method demonstrated that the new PSHA can successfully reproduce the results of a conventional PSHA. The new PSHA may not be very meaningful in itself. However, the real advantage of the method is that it can be used to develop probabilisitic seismic site coefficients. The suite of generated ground motion time histories are used to develop probabilistic site coefficients in the companion paper.

  • PDF

Seismic Design of Reinforced Concrete Structures of Limited Ductility in New Zealand Standard (뉴질랜드 기준에서의 제한된 연성의 RC 구조물 내진설계)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.288-295
    • /
    • 2000
  • As the level of earthquake intensity in Korea is considered to be moderate, some structures or structural elements may be subjected to the reduced ductility demand, in contrast to the structures in high seismicity, due to the large inherent strength induced by gravity loads. New Zealand Standard(NZS) deals with these structures within the category of structures of limited ductility. This paper briefly reviews the concept of structures of limited ductility in NZS, and its applicability to Korean case. A structural wall system which is used as the structural system for typical apartments is taken as an example for the illustration.

  • PDF

Optimization of RC Piers Based on Efficient Reanalysis Technique (효율적인 재해석 기법에 의한 RC 교각의 최적설계)

  • 조효남;민대홍;신만규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.199-204
    • /
    • 2000
  • In this study, an optimum design algorithm using efficient reanalysis is proposed for seismic design of RC Piers. The proposed algorithm for optimization of RC Piers is based on efficient reanalysis technique. Considering structural behavior of RC Piers, several other approximation techniques, such as artificial constraint deletion is introduced to increase the efficiency of optimization. The efficiency and robustness of the proposed algorithm increase the proposed reanalysis technique is demonstrated by comparing it with a conventional optimization algorithm. A few of design examples are optimized to show the applicability of the proposed algorithm.

  • PDF

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF