• Title/Summary/Keyword: seiche

Search Result 17, Processing Time 0.022 seconds

Seiche Characteristics of Gun-Jang Harbor (군장항의 부진동 특성)

  • Cho, Yong-Jun;Park, Hyung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • Lately Gun-Jang Harbor has undergone a drastic change in hydraulic characteristics due to newly added harbor protection measures, like a wharf and breakwater. The wharf and breakwater, with a training dike, were constructed to keep enough depth far navigation. They make the plan view of Gun-Jang Harbor semi closed and very elongated, which makes it very vulnerable to seiche. Hence it is an urgent task to unveil the hydraulic characteristics, like seiche, for the optimal operation of the new harbor system. In this study, we numerically analyze the seiche characteristics of Gun-Jang Harbor over the $10-4{\sim}10-3$ Hz frequency range, considering that wind waves due to seasonal winds are the most prevailing during winter in the West sea. As a wave driver, we use Mild Slope Eqs. and numerically integrate these using FEM based on Galerkin weak formulation. It turns out that the 1st, 2nd, 3rd and 4th eigen models are over 0.0009 Hz, 0.0013 Hz, 0.0017 Hz and 0.002 Hz.

Numerical Experiments of the Seiche in Young-il Bay and Pohang New Harbor, Korea (영일과 포항신항의 해면부진동에 관한 수치실험)

  • 박한일;정종율
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.245-258
    • /
    • 1986
  • A two-dimensional numerical model is developed to investigate the phenomenon of forced seiche caused by the incident long waves. This model is applied to Young-il Bay and Pohang New Harbor, where the seiche is most frequently observed and the damage of the seiche is serious compared with the other harbors in Korea. Some results on this study are as follows; 1. The natural periods of the first two modes obtained from the present model are about 70 and 25 minutes respectively for Young-il Bay, and about 25 and 7.5 minutes for Pohang New Harbor. These results are well consistent with those obtained by the theoretical formula, the spectral analysis, and the statistical investigation of the recorded data. 2. Since the fundamental natural period of Pohang New Harbor is almost the same as the second natural period of Young-il Bay, the seiche in Pohang New Harbor can be strongly amplified by the Oscillation in Young-il Bay. Therefore, the most strong seiche in Pohang New Harbor can occur when the long wave of about 25-minute period come into Young-il Bay.

  • PDF

Research on the Seiche of the Mukho harbor using the Boundary Element Method (경계요소법(境界要素法)에 의한 묵호항(墨湖港)의 부진동특성(副振動特性)에 관한 연구(研究))

  • Lee, Hong Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.255-263
    • /
    • 1992
  • A numerical simulation using the Boundary Element Method is performed for investigating the seiche in the Mukho harbor. The range of the incident waves period is from 7 seconds to 10 minutes, which these surface waves usually may be found in cases of the swell and the long period storm surges caused by storm winds. It is found that the seiche may be occurred by resonating with the incident waves of which the periods are about 11 seconds and 3 minutes. The numerical method was verified by the hydraulic model experiment data which had performed before. Numerical results for the seiche in the Mukho harbor show good agreements with the field observations, so that this research may be useful to estimate harbor calmness in a harbor and the harbor planning.

  • PDF

A Study on the Efficiency Improvement of Existing Pool-and-Weir Type Fishway in Namgang Weir (남강수중보의 기존 전면월류형 계단식 어도의 효율성 개선에 관한 연구)

  • Lee, Hyeong-Rae;Kim, Ki Heung;Park, Ho Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.61-71
    • /
    • 2014
  • A river fishway is a hydraulic structure enabling fish to overcome stream obstructions such as dams and weirs. The main aim of this paper is to investigate the collectibility of upstream-migrating fishes and hydraulic problems in pool-and-weir type fishway which has been established for upstream-migration at Namgang weir in the downstream of Namgang dam, and to grope for improvement measures which pool-and-weir type fishway can be switched to pool-and-partial weir type fishway through hydraulic field experiment. Exsisting fishway had problems which upstream-migrating fishes can not take a rest due to the seiche and vortex phenomena in pools and migrate to upstream because of height difference in entrance pool. In order to prevent hydraulically the seiche and vortex phenomena and establish rest area for fishes in each pool, we carried out hydraulic field experiments. In the fishway, it was to improve pool-and-weir into pool-and-partil weir, to decrease the height difference in entrance pool, and to reduce oriffice velocity of each pool. Also, we investigated fishes collectibility of after improving fishway for 6 days in September 2013. To resolve chronic problems(seiche-vortex phenomena and rest area for fishes), as weirs were remodeled into partial weir only which central part of weirs was part of non-overflow weir, we confirmed results that pool-and-weir type fishway could be switched to efficient pool-and-partial weir type fishway with relatively simple construction and low cost. Type-B which has the closed oriffices and the parts of non-overflow has the ideal conditions, but this conditions are limited to fishway of Namgang weir used in this study. Representative Ice-habor type fishway is pool-and-partial weir type fishway which has together parts of overflow and oriffices, and has excellent ability of upstream-migration. To switch from pool-and-weir type fishway to pool-and-partial weir type fishway, the size of oriffice has to be regulated by the discharge of fishway and the dimension on parts of non-overflow and overflow in weirs. Entrance pool is important facility which upstream-migrating fishes have to not only be collect but also charge with energy. In this study, entrance-pool is temporary and roughly-built, but fishes gather together more than the case of no entrance-pool. In the case of fishway which was protruded to downstream, as entrance of fishway turns toward or parallels to weir, the collectibility of fishway was excellent by attraction water.

Analysis of the Wave Induced Downtimes in Pohang New Harbor (포항신항내 파랑에 의한 Downtime 분석)

  • 정원무;오세범;채장원;김상익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.24-34
    • /
    • 1997
  • To find the causes of the downtime problems in Pohang New Harbor, extensive field measurements of short- and long-period waves for 1.5 months and their analyses were made taking into account of wind and downtime records. Measured wave height ratios inside the harbor are appeared to be slightly larger than predicted ones using numerical methods in the previous studies. It is shown that the major causes of the downtime are the wind wave (or swell) higher than loading criteria and also swell with even smaller wave height but longer period(more than 10 sec). Waves of long-period components[0(min)] were recorded as 20 cm high in case of dominant seiche phenomena but they might not be related with the downtime problems.

  • PDF

Resonant Oscillations in Mukho Harbor (묵호항의 항내 진동)

  • 정원무;정경태;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.46-56
    • /
    • 1995
  • Three Pressure type wave gauges were installed for about 10 days for the analysis of long wave agitations in Mukho Harbor. Helmholtz and second resonant periods of seiche in Mukho Harbor are shown to be approximately 10.0-14.3 and 3.3 minutes from the spectral analysis of measured wave data. Amplification ratio at Helmholtz period reaches about 6.8 and the wave amplitudes in the harbor were in the range of 5-10 cm during the measurement period. Helmholtz and second resonant periods of seiche in Mukho Harbor agree very well with those computed using Jeong dt al. (1993b)'s model. The model gives rise to the first and third resonant peaks at 7.5 and 1.9 minutes, respectively.

  • PDF

A Mathematical Modeling of Two-Dimensional Unsteady Flow for Long Waves in a Harbor (항내(港內) 장주기파(長週期波) 해석(解析)을 위한 2차원(二次元) 부정류(不定流)의 수학적(數學的) 모형(模型))

  • Lee, Jong Tae;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.13-24
    • /
    • 1983
  • A mathematical model for the two-dimensional unsteady flow was developed by introducing Abbott's implicit finite difference operator and double sweep algorithm, which could be applied to simulate the respose of a harbor against the intrusion of long waves through the entrance connected to open sea. In order to improve its accuracy corresponding to the field phenomena, bottom resistance, Coriolis force, wind effect terms were included and wave direction and radiating effect was considered. The result of seiche test was always stable and the amplitude was accurate. Some phase shift was occured, but it could be reduced by using small values of Courant number and many points per a wave length as well. A comparision with the Ippen and Goda's theoritical and hydraulic experimental works was fulfilled.

  • PDF

Response of Tide-Well on Seiche (부진동에 대한 검조우물의 반응 특성)

  • 박광순;이동영;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.452-458
    • /
    • 1994
  • The advantage of tide-well system with an intake pipe near the sea floor is that it can record not only tide but also harbour oscillation. tsunami. rapid change of tide height when a storm was causing rapid fluctuations in sea level. Consequently record of harbour oscillation may be extracted from tidal records by removing the predicted tide and then correcting for the attenuation caused by the tide-well system. The response of tide-well with intake pipe to seiche was examined by in situ measurements for Mukho tidal station. The well constant was also computed hydraulically on the basis of the structure of the tide gage system. It has been found that the response coefficient of the Mukho tidal station was 0.01. The tide records can be used for the determination of mean sea levels for surveying purposes. as the response of tide-well system can be estimated.

  • PDF

The Linearized Four-point Method of Characteristics for Unsteady Flow Computation (선형 4점 특성법에 의한 부정류의 해석)

  • 이종태;이원환
    • Water for future
    • /
    • v.15 no.4
    • /
    • pp.39-44
    • /
    • 1982
  • A numerical computation of unsteady flow in the open channel was studied with the linearized four-point method of characteristics. A seiche test for this model was fulfilled and its result was very close to the exact solution. The effect of linearization to the accuracy of the result was small enough for the analysis of nearly horizontal flow, and this model would be applicable for the real unsteady flow problem because of its convenience.

  • PDF

Downtime Analysis for Pohang New Harbor through Long-term Investigation of Waves and Winds (장기간 파.바람 조사를 통한 포항신항의 하역중단 원인 분석)

  • Jeong, Weon-Mu;Ryu, Kyong-Ho;Baek, Won-Dae;Choi, Hyuk-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.226-235
    • /
    • 2011
  • Field measurements of the winds and waves were carried out for one year at multiple locations inside and outside of the Pohang New Harbor in order to clarify the reason of downtimes frequently occurring at most of the harbor quays and to establish an efficient countermeasure. In addition, the downtime records of the quays and precipitation data provided by Korea Meteorological Agency were acquired for mutual comparison and comprehensive analysis of the cause of downtimes. Except the influence of precipitation, it was found that the downtimes occurred when the height of waves entering into the harbor incurred by either one of swell, wind seas, or mixture of both, exceeded a threshold. The seiche whose period ranges from 5 to 80 minutes, which was suspected as a possible cause of the downtimes, is shown to have no direct relation with the downtimes. Meanwhile, the height of far-infra-gravity waves whose period ranges between 0.5 and 3 minutes, propagating to the harbor mouth forced by short period waves, showed almost proportional relationship with the height of short period waves. Based on the result of this study, it is concluded that the downtime problems of Pohang New Harbor can be greatly improved by effectively preventing the entrance of short period waves such as swell or wind seas.