• Title/Summary/Keyword: segregation potential

Search Result 57, Processing Time 0.031 seconds

Solid Particle Behavior Analysis in Rheology Material by Fortran 90 (레오로지 소재의 고상입자 변형거동 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

Analysis of Grain Size Controlled Rheology Materials Dynamics for Prediction of Solid Particles Behavior (레오로지 소재의 고상입자 거동 예측을 위한 결정립 동력학 해석)

  • Kim H.I.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1337-1340
    • /
    • 2005
  • A rheology casting technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forming. The liquid segregation is important on mechanical properties of materials using rheology casting. In this study, so, molecular dynamics simulations were performed for the control of liquid segregation. Because the dynamics of fluid flow about nano-scaled materials is completely different from continuum, molecular dynamics simulations were used. The behavior of particles was far from the truth according to boundary conditions in simple flow. But various movement of particles appear at two or more molecular simulations.

  • PDF

A Study of Hydrogen-Induced Metal Atom Rearrangement

  • Noh, Hak;Park, Choong-Nyeon;Flanagan, Ted B.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.111-115
    • /
    • 1996
  • Metal atom rearrangement has been shown to take place under the influence of hydrogen-induced atomic diffusion (HIAD) in initially homogeneous fee palladiumalloys by electron microprobe analysis, optical microscopy, mechanical property tests and hydrogen isotherms. HIAD takes place in palladium alloys at moderate to elevated temperatures leading to phase segregation under conditions where segregation does not normally occur, i.e., in the absence of H over the time scale of the experiments. From these results, it is confirmed that dissolved hydrogen plays a dual role in some of these alloys, i.e. it catalyzes metal atom diffusion. This research demonstrates the potential utility of employing H-induced changes for phase diagram determination of Pd alloys and possibly for other alloy system.

  • PDF

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

The Influence of Viscosity Agent on Non-Segregation Property in Underwater Concrete (수중 콘크리트의 분리 저항성에 미치는 중점제의 영향)

  • 김선만;김영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.117-122
    • /
    • 1996
  • The purpose of this study is to investigate the properties of underwater concrete using three kinds of cellulose ether which has viscosity and water retention. The result is that water retention in underwater concrete shows in inverse proportion to PH value and the compressive strength is almostly effected by water retention. It can be certificated by the zeta electro potential value of an undispersed underwater concrete.

  • PDF

Inheritance of Resistance to Gall Mite(Eriophys macrodonis) in Boxthorn (Lycium chinese) Cultivars (구기자품종의 구기자혹응애 저항성 유전)

  • 최재을;차선경;김영창;김진희;강희경
    • Korean Journal of Plant Resources
    • /
    • v.15 no.3
    • /
    • pp.298-304
    • /
    • 2002
  • The inheritance of resistance to gall mite(Eriophys macrodonis) in boxthorn cultivars was studied with plants infected in open field. Segregation of the F$_1$ generation from crosses between resistant cultivars(Japan 1 and China 1) and susceptible line(CL42-56) hits a 3 resistant : 1 susceptible ratio, and the segregation ratio was 15 : 1 in cross between Japan 1 and China 1. It is concluded that gall mite resistance seemed to be controlled by two duplicate genes(El and E2), such that E1e1E2e2 symbolize the genotypes of China 1 and Japan 1. However, F, generation from Chungyanggugiza and CL42-56 cross did not showed clear segregation pattern but continuous variation was observed against gall mite resistance when resistance was determined on the basis of the percentage of galled leaves. Results indicated that the inheritance of resistance in Chungyanggugiza may be polygenic and complex. Also, Japan 1 and China 1 has a strong potential as a source of gall mite resistance, and Chungyanggugiza showing less resistance still has a valuable source.

Dynamic Simulation of Solid Particle Considering Change by Viscosity in Rheology Material (반응고 재료에서 점성을 고려한 고상입자의 거동예측을 위한 수치모사 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.26-38
    • /
    • 2009
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology process to be performed. General plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape which is rectangle shape(square array), rectangle shape(hexagonal array), and free shape tool. In addition, the dynamics behavior compare with Okano equation to power law model which is viscosity equation.

Chemical and Physical Influence Factors on Performance of Bentonite Grouts for Backfilling Ground Heat Exchanger (지중 열교환기용 벤토나이트 그라우트의 시공성에 대한 화학적, 물리적 영향 요소에 관한 연구)

  • Lee, Chul-Ho;Gil, Hu-Jeong;Lee, Kang-Ja;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1475-1486
    • /
    • 2008
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because its high swelling potential. However, if the bentonite-based grouting is conducted in coastal areas, the salinity of groundwater changes in the mineral fabric of bentontie. In order words, an increase of cation concentration in groundwater leads to a reduction in the diffuse double-layer thickness in the bentonite mineral structure, and thus the volume of bentointe-based grouts will decrease proportional to the salinity of groundwater. In this paper, the effect of salinity (i.e., NaCl 0.5M, 0.25M, and 0.1M) on the change of swelling potential for bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, in case of using addictives such as a silica sand to increase the thermal conductivity of bentonite-based grouts, the possibility of particle segregation has been studied considering the viscosity of grouts and salinity of groundwater.

  • PDF

Stathmin 1 in normal and malignant hematopoiesis

  • Machado-Neto, Joao Agostinho;Saad, Sara Teresinha Olalla;Traina, Fabiola
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.660-665
    • /
    • 2014
  • Stathmin 1 is a microtubule destabilizer that plays an important role in cell cycle progression, segregation of chromosomes, clonogenicity, cell motility and survival. Stathmin 1 overexpression has been reported in malignant hematopoietic cells and Stathmin 1 inhibition reduces the highly proliferative potential of leukemia cell lines. However, during the differentiation of primary hematopoietic cells, Stathmin 1 expression decreases in parallel to decreases in the proliferative potential of early hematopoietic progenitors. The scope of the present review is to survey the current knowledge and highlight future perspectives for Stathmin 1 in normal and malignant hematopoiesis, with regard to the expression, function and clinical implications of this protein.

Evaluation of Elastic-Plastic Fracture Toughness of Aged AISI 316 Steel Using DC-electric Potential Method (직류전위차법을 이용한 AISI 316강 시효재의 탄소성 파괴인성 평가)

  • Lim, Jae-Kyoo;Chang, Jin-Sang;Lino, Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.519-527
    • /
    • 1997
  • AISI 316 steel has been used extensively for heater and boiler tube of the structural plants such as power, chemical and petroleum plants under severe operating conditions. Usually, material degradation due to microcrack or precipitation of carbides and segregation of impurity elements, is occured by damage accumulated for long-term service at high temperature in this material. In this study, the effect of aging time on fracture toughness was investigated to evaluate the measurement of material degradation. The elastic-plastic fracture toughness behaviour of AISI 316 steel pipe aged at $550^{\circ}C$for 1h-10000h (the aged material) was characterized using the single specimen J-R curve technique and eletric potential drop method at normal loading rate(load-line displacement speed of 0.2mm/min) in room temperature and air environment. The fracture toughness data from above experiments is compared with the $J_{in}$ obtained from predicted values of crack initiation point using potential drop method.