• Title/Summary/Keyword: seepage meter

Search Result 6, Processing Time 0.023 seconds

Measurements of Streambed Hydraulic Conductivity Using Drive-point Piezometers and Seepage Meters in the Upper Reaches of Anseong Stream (관입형 피조미터와 시피지미터를 이용한 안성천 상류구간 하상 수리전도도 측정)

  • Lee, Jeongwoo;Chun, Seon Geum;Yi, Myeong Jae;Kim, Nam Won;Chung, Il-Moon;Lee, Min Ho
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.413-420
    • /
    • 2015
  • Streambed hydraulic conductivity along the upper reaches of the Gongdo stage of Anseong Stream was estimated through measurements of stream-aquifer exchange rates (using a seepage meter) and vertical hydraulic gradients (using a manually driven piezometer). From the measured data, it was found out that the stream-aquifer exchange rates varied from -1.55 × 10-6 to 1.77 × 10-5 m/s, the corresponding vertical hydraulic gradient varied from -0.122 to 0.030, and the values of the streambed vertical hydraulic conductivity were estimated from 1.77 × 10-5 to 1.97 × 10-3 m/s, with variations representing local differences. The results are within the general range of streambed hydraulic conductivity values suggested by Calver (2001) and are slightly higher than values previously measured at other stream sites in Korea. The combined use of a drive-point piezometer and seepage meter (both constructed of high-strength stainless steel) is expected to be of practical use in the estimation of streambed hydraulic conductance, given the durability and portability of the instruments.

Delineation of water seepage in a reservoir embankment from ground temperature measurements (지온탐사에 의한 저수지 제방의 누수 조사)

  • 박삼규
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.169-175
    • /
    • 1999
  • The water leakage of reservoir embankment usually occurs through water vein, which gives little influence on the embankment in a normal state. However, the embankment can be destroyed when the water level of reservoir increases with heavy rain in summer. Investigating the water vein and its path is therefore very important from the viewpoint of disater prevention and embankment protection. This paper presents survey results of one-meter-depth ground temperature and multi-point temperature logging in an embankment in Japan to delineate water veins and permeable formations. Four water veins have been predicted in the embankment by comparing measured one-meter-depth ground temperatures with the background ones which have no effect of water vein. The multi-point temperature logging was carried out in the borehole drilled at one of the predicted water veins. Depth and thickness of the permeable formation in the borehole can be determined from temperature restoration ratios with elapsed time. From these results we can find that the water leakage of reservoir embankment mainly occurs in sandy soil formation in the embankment.

  • PDF

Submarine Discharge of Fresh Groundwater Through the Coastal Area of Korea Peninsula: Importance as a Future Water Resource (한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성)

  • Hwang, Dong-Woon;Kim, Gue-Buem;Lee, Jae-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.4
    • /
    • pp.192-202
    • /
    • 2010
  • Submarine groundwater discharge (SGD) has been recognized as a provider for freshwater, nutrients, and dissolved constituents from continents to the oceans and paid more attention with regard to the mass balance of water or dissolved constituents on local and global scales. The submarine discharge of fresh groundwater (fresh SGD) through seepage or springs in coastal ocean may be especially important in aspects of water resource and marine environment managements in the future. Based on the worldwide compilations of observed fresh SGD, our review reveals that fresh SGD occurs in various marine environments along most shoreline of the world and the global estimates of fresh SGD were approximately 0.01-17% of surface runoff. In addition, the input of fresh SGD calculated and investigated in this study were about 50%, 57%, 89%, and 420% of total river discharge in Jeju Island, Yeongil Bay, Masan Bay, and Yeoja Bay, respectively. These inputs from fresh SGD along the shoreline of Korea Peninsula are much higher than those of the whole world, greatly vary with the region. However, since these estimates are based on the water balance method mainly used in coastal ocean, we have to perform continuous monitoring of various parameters, such as precipitation, tide, evapotanspiration and water residence time, which have an impact on the water balance in a lot of areas for evaluating the precise input of fresh SGD. In addition, since the method estimating the input of fresh SGD has brought up many problems, it is required to make an intercomparison between various methods such as hydrogeological assumption, numerical modeling, and seepage meter.

CASE STUDY ON SEVERELY-DAMAGED REINFORCED EARTH WALL WITH GEO-TEXTILE IN HYOGO, JAPAN Part II: Numerical simulation into causes and countermeasures

  • Hur, Jin-Suk;Kawajiri, Shunzo;Jung, Min-Su;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.11-17
    • /
    • 2010
  • Numerical analysis was carried out in order to simulate the development of the large deformation that took place on the reinforced earth wall, a part of the Tottori expressway planned to pass Hyogo, Japan. Since this reinforced earth wall had experienced unexpected deformation of the wall during construction, the wall was re-constructed twice. However, the wall deformation showed no sign to cease even at the final stage of the construction. Countermeasures to re-stabilize the wall were demanded. In part I of this paper, it was manifested that subsidence of a 3-meter weak soil due to seepage flow was responsible for the large deformation. A part of concrete panel wall was severely damaged due to extremely large pulling force of geotextile induced by the hammock state. As for the countermeasures, "grouting with slag system" was applied to fill voids of the backfill, and also to prevent further development of settlement in the weak soil layer. "Ground anchor" was also considered to achieve the prescribed factor of safety.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

Research on the Loss of Irrigation Water Flowing in the Earth Channel (흙 수로내에서의 용수손실에 관한 연구)

  • 김철회
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2703-2715
    • /
    • 1972
  • 1. Title of Research Research on the Loss of Irrigation Water Flowing in Earth Channel. 2. Purpose and Importance of Research The purpose of this research is to obtain the accurate loss rated of irrigation water flowing in earth channels so as to give a criterion of designing rational and effective suplpy project of irrigations water. It is the present status that the loss rates of 10 to 20% are obscurely applied without any scientific proof. Therefore, the importance of this research lies in securing loss rates, which are experimentally proves to be suitable for specific local conditions. 3. Content and Scope of Research The selected test reach of the main channel is 1,000m long. Discharges were measured at up and downstream enps by using current meter. The test reach of the lateral channel is 500m long, and parshall flumes were set at both ends to measure inflow and outflow. Finally, for the supply ditch, the test section is 200m long, and sharp-edged rectangular weirs were provided at both ends to measure inflow and outflow. In addition, various factors influence on the loss of irrigation water in channel wer examined. 4. Results of Research and Proposition Results: 1. In the main channel, which is 1,000 M long, and has a slope of 1/3,000 and was constructed by cutting earth, its loss rate is 9.64%. 2. In the lateral, which has a slope of 1/1,500, and is 500m long, and was constructed by cutting, its loss rate is 15.55%. Its average seepage rate is 2.08cm/day. 3. In the supply ditch, which has a slope of 1/300, and is 200m long, and was constructed by filling earth, its loss rate is 12.34%, its average seepage rate being 3.37cm/day. Proposition: As could be seen in the results above-mentioned, it is contradictory to apply a loss rate of 20% for every main channels and 15% for every laterals without variation, as done so for in planning irrigation project. The fact, however, is that loss rates must be different according to localities and characteristics. Due to the fact that this experiment is small in its scope and is nothing but a preliminary one, it is hardly possible to draw decisive conclusions with the results obtained in this research. Loss rates, that are secured through more extensive research, should be used, in order to establish precise irrigation project. Moreover, such researches should be carried out for a number of loclities throughout the nation.

  • PDF