• Title/Summary/Keyword: seedling soil

Search Result 717, Processing Time 0.026 seconds

Water Physiology of Panax ginseng. 1. Habitat observation. cultural experience, weather factors and characteristics of root and leaf (인삼의 수분생리 1. 자생지관찰.재배 경험.기상요인과 근 및 엽의 특성)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.4 no.2
    • /
    • pp.197-221
    • /
    • 1980
  • Habitat observation, cultural experience of old and present plantation, weather factors in relation to crop stand and water physiology of root and leaf were reviewed. According to habitat observation ginseng plants love water but plate wit talus well grow at drained place with high moisture content in air and soil while ginseng plants were not found in dry or wet place. According to cultivation experience ginseng plants require abundant water in nursery and main field but most old planters believe that ginseng plaints are draught-loving thus require little water. The experience that rain especially in summer i.e unfavorable might be due to mechanical damage of leaves arid leaf disease infection, or severe leaf fall which is caused by high air temperature and coinsided with rain. According to crop stand observation in relation to weather factors abunsant water increased each root weight but decreased total yield indicating tile increase of missing root rate. Rain in summer was unfavorable too. Though rain in June was favorable for high yield general experience that cloudy day and rain were unfavorable might be due to low light intensity under shade. Present leading planters also do loot consider the importance of water in main field. Water content is higher in top than in root and highest in central portion of root and in stem of top. For seedling the heavier the weight of root is tile higher the water content while it reveries from two years old. Water potential of intact root appeared to be -2.89 bar suggesting high sensitivity to water environment. Under water stress water content severly decreased only in leaf. Water content of leaf appeared to be 78% for optimum, below 72% for functional damage and 68% for perm anent wilting. Transpiration or curs Principally through stomata in lower side of leaf thus contribution of upper side transpiration decreased with the increase of intensity. Transpiration is greater in the leaves grown under high light intensity. Thus water content is lower with high light inte nsity under field condition indicating that light is probable cause of water stress in field. Transpiration reached maximum at 10K1ut The decrease of transpiration at higher temperature seems to be due to the decrease of stomata aperture caused by water stress. Severe decrease of photosynthesis under water stress seems to be principally due to functional damage which is not caused by high temperature and Partly due to poor CO2 supply. Water potential of leaf appeared to be -16.8 bar suggesting weakness in draught tolerance. Ginseng leaves absorb water under high humidity. Water free space of leaf disc is %mailer than that of soybean leaf and water uptake appears to be more than two steps.

  • PDF

EFFECTS OF INTERCROPPING, SEEDLING RATE AND FERTILIZER ON FODDER PRODUCTION IN THE LOW LYING AREA OF BANGLADESH

  • Sarker, N.R.;Giasuddin, M.;Islam, M.M.;Rahman, M.M.;Yasmin, L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 1994
  • The study was conducted at low lying areas in Pabna Sirajgong districts of Bangladesh. To observe the potentiality of bio-mass production two trials were conducted. In first trial maize intercropped with Khesari taking 15 experimental plots of each size $5m{\times}5m$ were arranged in 5 blocks having homogenous soil characteristics. The study showed that the bio-mass yield of sole maize and sole Khesari were 35.25 t/ha. and 56.80 t/ha. respectively and there was a significant difference (p < 0.01) among them. The results also showed that bio-mass yield of maize and Kherasi was higher ($70.04{\pm}6.25t/ha$, $98.88{\pm}10.77t/ha$ and $80.56{\pm}9.5t/ha$) compared to sole maize and sole Khesari and land equivalent ratio was also lower. For second trial, one hectare of land was divided into 16 experimental plots with 4 replications in each plot. Four levels of urea (0 kg/ha, 30 kg/ha, 45 kg/ha, and 60 kg/ha.) were applied to experimental plot. The seed rates were 98.8 kg/ha (farmer's practice), 86.45 kg/ha, 74.1 kg/ha and 61.75 kg/ha. average bio-mass yield of matikalai at different seed rates along with urea fertilizer ranged from 38.49 t/ha, to 65.35 t/ha. the highest seed rate along with highest fertilizer also correspond to the peak production (65.35 t/ha) and the lowest seed rate (61.75 kg/ha) along with the lowest fertilizer rate (30 kg/ha.) showed lowest production (38.49 t/ha.). Here, it was found that the bio-mass yield of matikalai increased with the incremental amount of seed, indicating significant effect (p < 0.05) of seed rates on the bio-mass yield of matikalai. On the other hand, fertilizer doses in different treatment combinations had significant effect (p < 0.05) on bio-mass yield. Two levels of seed rates at zero level of fertilizer were recommended : 86.45 kg/ha for the resource rich farmers and 61.75 kg/ha for the resource poor farmers.

Phytotoxic Response of Some Fruit Trees to Oxyfluorfen (Oxyfluorfen 처리(處理)에 따른 과수종(果樹種) 및 품종간(品種間)의 약해반응(藥害反應))

  • Cho, Y.W.;Pyon, J.K.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.337-347
    • /
    • 1987
  • Spary and vapor drift injuries of apple, pear, and peach seedling caused by soil-applied oxyfluorfen were studied in a greenhouse. Bud bursting rate of all fruit trees was reduced by both spray and vapor drifts of oxyfluorfen, but reduction in bud bursting rate of pear and peach was greater than that of apple trees. Reduction in the number of leaves per shoot of apple and peach was greater than that of pear trees. Leaf injury of pear was most severe and occurred earliest, but leaves of peach were least injured, Leaf injuries of pear and apple were caused by both spray and vapor drifts, but leaves of peach was injured largely by vapor drift. Reduction in shoot growth of and pear was greater than that of peach trees. Shoot growth of pear was more rapidly retared compared with apple trees. In the field, oxyfluorfen delayed the time of bud bursting in young apple trees. Oxyfluorfen applied between initiation and completion of bud bursting delayed bud bursting more than earlier application although ultimate number of bursted buds was similar to control. The number of leaves per shoot and total length of shoots were lower than control until 40 days after application of oxyfluorfen, and then were similar to control because of vigorous growth after May.

  • PDF

The status and Causes of Rooting Failure on Growth of Divided Crown in Paeonia lactiflora Pallas Cultivation (작약(芍藥) 분주묘(分株苗)의 활착불량(活着不良) 실태(實態)와 원인(原因))

  • Kim, Se-Jong;Kim, Ki-Jae;Park, Jun-Hong;Kim, Jung-Hye;Park, So-Deuk;Choi, Boo-Sull
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 1997
  • The experiment was conducted to find causes of rooting failure in divided crown of peony cultivation. The results were as follows : In farmer s fields, damage rate of rooting failure in divided crown of peony was 32% as non-sprouting 5.6%, withering after sprouting 20.7%, and wilting after sprouting 5.7%, repectively. Damage degree in farmer s fields was followed, above 70% by 4%, 41 to 70% by 17%, 11 to 40% by 45% per total field area, respectively. It was caused by rooting failure. Damage rate of rooting failure as affected by different planting time was 18.2% for planting in autumn, 42.9% for planting in spring, and damage in divided crown was higher than in seedling. As periods to planting were prolonged, growth and yield were larger poorly, treatment with seminal-root sterilization and soil insecticide showed good growth and rooting but untreated control was very poor. Main cause of rooting failure in divided crown of peony was disease, Cylindrocarpon sp. and low quality of seeds.

  • PDF

A Convergent Study on Applying a fine bubble to ginseng seedling cultivation (인삼 종묘삼 재배 시 파인버블을 적용하는 융합적 연구)

  • Ahn, Chul-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.191-196
    • /
    • 2017
  • This study was conducted to investigate the effect of fine bubble water treatment on the growth of ginseng seedlings. The growth of ginseng seedlings which were treated with general water and fine bubble water was investigated. The above ground part, the growth of leaf was increased by about 10% and the growth of the stem was about 6%, as the ginseng seedlings which were treated with fine bubble water comparing to the ginseng seedlings treated with general water. Root length was increased about 5%, root width was increased about 8%, roots weight was increased about 9%, and dry weight was increased about 7%. This is not because the whole root growth was increased, but the main root growth was increased about 7%. These results suggested that the physical properties of the fine bubble water stimulated the growth of ginseng seedlings. These results are initial study in the case of ginseng seedlings. Therefore, it can be applicable to the 3-5 years old ginseng plants. Further research will be needed to find out the optimal cultivation condition by controlling the dissolved oxygen amount according to the soil condition and the research applied to the ginseng seedlings.

Evaluation of Bio-Control Efficacy of Trichoderma Strains against Alternaria alternata Causing Leaf Blight of Ashwagandha [Withania somnifera (L.) Dunal]

  • Rahman, Md. Ahsanur;Rahman, Md. Arifur;Moni, Zakiah Rahman;Rahman, Mohammad Anisur
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2020
  • Ashwagandha is an important ancient medicinal crops, being affected with many diseases, among which leaf blight caused by Alternaria alternata has become the constraint resulting in huge yield losses. Continuous usage of chemical methods leads to environment, soil and water pollution. Whereas biological control of diseases is long lasting, inexpensive, eco-friendly and harmless to target organisms. In this context, it is aimed to evaluate five Trichoderma strains viz. Trichoderma virens IMI-392430, T. pseudokoningii IMI-392431, T. harzianum IMI-392432, T. harzianum IMI-392433 and T. harzianum IMI-392434 as bio-control efficacy against A. alternata and growth promoting effect in Ashwagandha. All the Trichoderma strains had varied antagonistic effects against the pathogen. In dual culture technique, the strain T. harzianum IMI-392433 showed maximum percentage inhibition of mycelial growth (54.89%) followed by T. harzianum IMI-392432 (53.83%), T. harzianum IMI-392434 (48.94%) and T. virens IMI-392430, (43.62%) against the pathogen, while the least inhibition percentage was observed with the T. pseudokoningii IMI-392431 (36.60%). The culture filtrate of the Trichoderma strain, T. harzianum IMI-392433 recorded highest inhibition on the mycelial growth (39.05%) and spore germination (80.77%) of pathogen and the lowest was recorded in T. pseudokoningii IMI-392431 (20.45 and 50%). Moreover, seeds treated with spore suspension of the strain T. harzianum IMI-392433 reduced the percentages of disease severity index significantly. The strain T. harzianum IMI-392433 also significantly increased seed germination %, seedling vigor and growth of Ashwagandha. The correlation matrix showed that root yield per plant of Ashwagandha had significant and positive correlation with plant height (r=0.726⁎⁎), number of leaf (r=0.514⁎⁎), number of primary branch (r=0.820⁎⁎), number of secondary branch (r=0.829⁎⁎), fresh plant weight (r=0.887⁎⁎), plant dry weight (r=0.613⁎⁎), root length (r=0.824⁎⁎), root diameter (r=0.786⁎⁎), root dry weight (r=0.739⁎⁎) and fresh root weight (r=0.731⁎⁎). The significant and negative correlation (r=-0.336⁎⁎) was observed with the root yield and percentages of disease severity index. The study recognized that the T. harzianum IMI-392433 strain performed well in inhibiting the mycelial growth and reduced the percentages of disease severity index of pathogen as well as increased the plant growth in Ashwagandha.

Effect of Planting Depths on the Growth, Quality and Yield of Oriental Melon (Cucumis melo L. var. makuwa Mak.) (정식깊이가 참외 생육, 품질 및 수량에 미치는 영향)

  • Shin Yong Seub;Kim Jwoo Hwan;Park So Deuk;Park Jong Wook;Kang Chan Koo;Kim Byung Soo;Khan Z.
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • This experiment was conducted to investigate planting depth, which applied the basic data for planting growth ability and mechanical planting of oriental melon. 'Gumssaragi-eunchun' variety was approach grafting to 'Shintozoa' and seedling was growing during 45 days in the 9cm pot and then planted on Jan. 16. The comparison of planting plots was carried out for four experimental plots, which were separated into 0cm, 4.5cm, 9cm, standard cultivation, and 12cm planting depth in soil. In the tunnel of vinyl house, the lowest and the highest temperature was $9.3^{\circ}C\;and\;41.2^{\circ}C$, respectively, and humidity was $59\~99\%$ during Jan. 18 and 19. The faster graft-take rate after planting was the deeper planting depth. The growth of 40 days after planting was not significant in each planting plot, except 0cm experimental plot. Fruit weight was the heaviest in 4.5cm planting depth of experimental plot but sugar content and flesh thickness were not significant in each planting depth. The more depth in planting meant the more increase in fermented fruit rate and decrease in marketable fruit rate. Marketable yield was 2,361kg per l0a in 9cm planting plot, which was $2\%\;and\;1\%$ lower than in 0cm and 4.5cm, respectively, and $11\%$ greater than in 12cm planting plot.

Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper (점액세균 Myxococcus sp. KYC 1126을 이용한 고추 역병 생물학적 방제 효능)

  • Kim, Sung-Taek;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • Bacteriolytic myxobacteria have been known to secrete various antifungal metabolites against several soilborne phytopathogens including Phytophthora. Among the three isolates of Myxococcus spp., KYC 1126 and KYC 1136 perfectly inhibited the mycelial growth of Phytophtora capsici in vitro. In order to show the biocontrol activity on Phytophthora blight of hot pepper, we tried to find the best way of application of a myxobacterial isolate. Although KYC 1126 fruiting body was easily grown on the colony of Escherichia coli as a nutrient source, it did not control the disease when it was pre-applied in soil. Before the bioassay of a liquid culture filtrate of KYC 1126 was conducted, its antifungal activity was confirmed on the seedlings applying with the mixture of the pathogen's zoospore suspension and KYC 1126 filtrate. On greenhouse experiments with five and four replications, the control value of KYC 1126 on phyllosphere and rhizosphere was 88% and 36%, respectively. Whereas, the control value of dimetnomorph+propineb on phyllosphere was 100% and that of propamorcarb on rhizosphere was 44%. There was a phytotoxicity of the myxobacterial filtrate when seedlings were washed and soaked for 24 hours. Gummy materials were covered with roots. And stem and petiole were constricted, then a whole seedling was eventually blighted.

Influence of Rice-Duck Farming System on Yield and Quality of Rice (벼논오리 방사가 쌀 수량 및 품질에 미치는 영향)

  • 강양순;김정일;박정화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.4
    • /
    • pp.437-443
    • /
    • 1995
  • Concerns on use of excess amount of chemical fertilizier and pesticide in current farming system turns both of the producer and consumer of agricultural products to an organic farming which use a less chemicals and more natural manure. Rice-duck farming system is one of the strategy to meet the purpose and this experiment was carried out to find the effect of the rice-duck farming system on the quality and yields of rice. 20day-old rice seedling were mechanically transplanted in sandy-loam paddy field and 21 day-old ducks were raised from 3 weeks after transplanting with population of 30 heads per 10a. The plots were consists of reduce fertilizer(70%) with and without duck-raising. The conventional fertilizer treatment without duck-raising was used as check. The results obtained are summarized as follows. The weeds population of test plots which were raised with duck for 3 consecutive years was less than that of test plots without duck-raising, though a speciffic population of Echinochola crusgallis were increased. The weed control effect was higer in duck-raising than in check at the maximum tillering stage but, not at later stages of rice plant. It was found that the small animals and insects inhibiting in the rice field were reduced by duck-treatment, however, there were also damages of grass leaf roller at booting stage in the plots of duck-raising. In rice-duck plot, dark green leaf color were found: 41.8 of SPAD value than 38.6 of SPAD in check plot. Higher root activity and surface soil oxidation were also observed in rice-duck plot than check plot. 3% of the increase in yield was observed by duck-treatment. However, the expected increase of the palatability wsa not observed. This may be due to the unfavorable weather conditions during the rice growing in this expriment.

  • PDF

Effect of Sowing Density and Number of Seeds Sown on Panax ginseng C. A. Meyer Seedling Stands under Direct Sowing Cultivation in Blue Plastic Greenhouse (인삼 하우스 직파재배 시 파종입수 및 재식밀도가 입모율 향상에 미치는 영향)

  • Mo, Hwang Sung;Park, Hong Woo;Jang, In Bae;Yu, Jin;Park, Kee Choon;Hyun, Dong Yun;Lee, Eung Ho;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.469-474
    • /
    • 2014
  • This study was performed to investigate the effects of sowing density and number of seeds sown on the emergence rate and growth characters of Panax ginseng C. A. Meyer under direct sowing cultivation in a blue plastic greenhouse. Ginseng seedlings, derived from seeds sown directly at different densities (90, 108, 135, and 162 seeds per $162m^2$), were cultivated in sandy loam soil within a blue plastic greenhouse. In contrast to the emergence rate, which decreased with an increase of sowing density, number of survival plant showed an increasing trend. Interestingly, the emergence and number of survival plant were significantly enhanced when 2 or 3 seeds were sown per hole compared with when one seed was sown per hole. Growth of the aerial parts of ginseng were not markedly influenced by sowing density or the number of seeds sown. However, chlorophyll content (SPAD values) increased with an increase in sowing density. Root parameters, such as root length, diameter, and weight, and the number of lateral roots decreased with an increase in sowing density, but were not noticeably influenced by the number of seeds sown. Total saponin content was the highest in the treatment plot containing 135 seeds. Similarly, the content of each ginsenoside was also tended to be higher in this treatment than in other treatment plots. On the basis of the results obtained in this study, it was possible to determine the optimal sowing density and seed number for the direct sowing cultivation of ginseng in blue plastic greenhouse.