• 제목/요약/키워드: seedling soil

Search Result 717, Processing Time 0.029 seconds

Influence of $NH_4^+$ and $NO_3^-$ Ratios in Fertigation Solution on Growth of Snapdragon Plug Seedlings and Changes in Medium Chemical Properties ($NH_4^+:NO_3^-$ 시비 비율이 금어초 플러그 묘 생장과 상토 화학성 변화에 미치는 영향)

  • Lee, Poong-Ok;Lee, Jong-Suk;Choi, Jong-Myung
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.251-256
    • /
    • 2010
  • Objective of this research was to investigate the influence of $NH_4^+$ and $NO_3^-$ ratios in liquid feeding on the growth of snapdragon 'Potomac Red' and changes in medium chemical properties. The seeds were sown into 200 plug trays and fertigated once a week with nutrient solution containing various ratios of $NH_4^+$ and $NO_3^-$ such as 0 : 100, 27 : 73, 50 : 50, 73 : 27, and 100 : 0. The total N concentrations were adjusted to 50, 100 and $150\;mg{\cdot}L^{-1}$ in plug stages of 2, 3, and 4, respectively. Determination of seedling growth and analysis of plant tissue and root medum were conducted at 56 days after sowing. The treatment of 27 : 73 ($NH_4^+:NO_3^-$) had the greatest plant height, fresh weight, and dry weight. The N and P contents in 27 : 73 ($NH_4^+:NO_3^-$) treatment based on the above ground plant tissues were 2.39 and 0.39%, respectively, which were the greatest among treatments. The elevation of $NH_4^+$ ratio in fertigation solution decreased tissue Ca and Mg contents, but that did not influence tissue K content. The variations in $NH_4^+:NO_3^-$ ratios impacted the soil solution pH and the difference among treatments had been severe since three weeks after sowing. Elevation of $NH_4^+$ ratios in fertigation solution increased electrical conductivity and concentrations of K, Ca, and Mg in soil solution of root medum. The $NH_4^+$ and $NO_3^-$ concentrations in the soil solution were high in weeks 2, 3, and 4, then decreased gradually as the biomass of seedlings increased. Medium P concentration decreased gradually as seedlings grew, but statistical differences were not observed among treatments.

Establishment of Herbicide Screening Methods for Reed (Phragmites communis Trin.) Control - I. Propagation of Reed (갈대(Reed, Phragmites communis Trin.)의 방제를 위한 제초제 스크리닝방법의 확립 - I. 갈대의 육묘)

  • Hwang, I.T.;Choi, J.S.;Lee, H.J.;Hong, K.S.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 1996
  • This experiment was conducted to find out an effective propagation method for reed(Phragmites communis Trin.), ensuring a continuous herbicide screening for reed control. Reed propagation methods were compared under a greenhouse condition using tour different materials; seeds, rhizomes, depressed stolons of P. japonica Steud., and stem cuttings. Although reed seeds were easy to harvest and store, their germination rate(${\leq}$5%) was very low and seedling growth from the seeds was slow. Rhizomes were difficult to harvest and their harvest time was limited from November to March. Furthermore, reed propagation using rhizomes had problems of a relatively low germination rate(46%), no uniformity in size and shape, individual differences at the early stage of growth, and difficulties in material storage. Rate of reed growth from rhizomes was higher in commercial soil mix(Boo Nong soil) than in sand or in sand+upland soil(1:1). Depressed stolons of P. japonica had a moderate germination rate(65%) and were relatively easy to harvest. However, their harvest time was limited only from August to September. Propagation method using stem cuttings had several advantages over the above methods using other materials. Reed plants could uniformly be propagated from the stem cuttings with a relatively high germination rate(75%). Stem cuttings of central nodes showed a higher germination rate compared to those of upper or lower nodes. Stem cuttings from the field should be used immediately after harvest, since their germination rate decreased rapidly when they were stored under a wet- or a dry-refrigerated condition. Furthermore, the germination of stem cuttings tended to decrease when they were collected from the field after August. This indicates that there is a limitation of harvest time for stem cuttings. However, a year-round propagation of reed using stem cuttings is possible if parent plants are grown in a greenhouse, and thus herbicide screening for reed control could continuously be performed.

  • PDF

Impact of Pre-planting NH4+:NO3- Ratios in Inert Media on the Growth of Chinese Cabbage Plug Seedlings (혼합상토에 기비로 혼합된 질소의 NH4+:NO3- 비율이 배추의 플러그 묘 생장에 미치는 영향)

  • Sung, Jwa Kyung;Lee, Nu Ri;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.736-745
    • /
    • 2016
  • This research was conducted to evaluate the impact of various pre-planting $NH_4{^+}:NO_3{^-}$ ratios on the growth of plug seedlings of 'Bool-am No.3' Chinese cabbage. With fixation of the pre-planting N concentrations to $300mg{\cdot}kg^{-1}$ in a peatmoss+coir dust+perlite (3.5:3.5:3, v/v/v) medium, the $NH_4{^+}:NO_3{^-}$ ratios were varied to 0:100, 27:73, 50:50, 73:27, 100:0. Then, the each of root media containing various ratios of $NH_4{^+}:NO_3{^-}$ as well as equal concentrations of other essential nutrients was packed into 72-cell plug trays. After seeds of 'Bool-am No.3' Chinese cabbage were sown, the seedling growths were measured 2 and 4 weeks after sowing. The weekly analysis of root media and end-crop tissue analysis for mineral nutrients 4 weeks after seed sowing were also conducted. As the seedlings grew up, the pH of the root media increased, however ECs in all treatments of $NH_4{^+}:NO_3{^-}$ ratios decreased. The concentrations of K, Ca and Mg in root media were higher in the treatments of $NH_4{^+}:NO_3{^-}$ (100:0) and $NH_4{^+}:NO_3{^-}$ (73:27) than those of $NH_4{^+}:NO_3{^-}$ (0:100) and $NH_4{^+}:NO_3{^-}$ (27:73) 2 weeks after seed sowing. But the concentrations of K, Ca, Mg and Zn were get lowered in all treatments and the differences among treatments were not significant 4 weeks after sowing. The highest $NH_4{^+}$ and lowest $NO_3{^-}$ concentrations of the root media were observed in the $NH_4{^+}:NO_3{^-}$ (100:0) among all treatments. Contrary to these, the treatment of $NH_4{^+}:NO_3{^-}$ (0:100) had the lowest $NH_4{^+}$ and highest $NO_3{^-}$ concentrations. The seedling growth in terms of fresh and dry weights of aerial part were the highest in the treatment of $NH_4{^+}:NO_3{^-}$ (23:73) at 2 weeks after sowing and those of $NH_4{^+}:NO_3{^-}$ (50:50) at 4 weeks after sowing. The survival rate of seedlings in $NH_4{^+}:NO_3{^-}$ (100:0) treatment were 19% and the growth of aerial part 4 weeks after sowing was the poorest among all treatments tested. The results mentioned above indicate that the pre-planting $NH_4{^+}$ ratio in inert media should not exceed 25% in plug stage 1 through 3 (until 2 true leaf development) and 50% in plug stage 4 (after 2 true leaves to transplant).

The Effects of 7 Fertilizers on the Growth and Nutrient Concentrations of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla Seedlings (7가지 시비처리가 물푸레나무, 들메나무, 잣나무, 전나무 묘목의 생장 및 양분농도에 미치는 영향)

  • Han, Si Ho;Byun, Jae Kyung;Cho, Min Seok;An, Ji Young;Park, Gwan Soo;Kim, Se Bin;Park, Byung Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • Fertilization is required to keep the balance of tissue nutrients and to produce high quality seedlings at the permanent nursery. This study was conducted to verify the optimum fertilization method for Fraxinus rhynchophylla, F. mandshurica, Pinus koraiensis, and Abies holophylla seedlings with vector diagnosis method. Seven treatments include nitrogen (N, $13.8g{\cdot}m^{-2}$), phosphorus (P, $6.1g{\cdot}m^{-2}$), potassium ($7.5g{\cdot}m^{-2}$) fertilization and 1x (N $6.9g{\cdot}m^{-2}$, P $3.05g{\cdot}m^{-2}$, K $3.65g{\cdot}m^{-2}$), 2x (twice of 1x), 4x (four times of 1x) fertilization and no fertilization. Soil pH decreased as fertilization increased. Nitrogen and NPK fertilization decreased exchangeable $Ca^{2+}$ and $Mg^{2+}$ concentrations. Height and root collar diameter of F. rhynchophylla and F. mandshurica significantly increased with N and NPK fertilization, but those of P. koraiensis and A. holophylla did not. The biomass of F. rhynchophylla and F. mandshurica was about twice higher at NPK fertilization compared to the control. The responses of vector diagnosis were different by tree species and fertilization treatment: F. rhynchophylla was in the status of N "dilution", which means the N concentration decreases with N content. Phosphorus and K were "sufficiency" state with 4x fertilization. F. mandshurica showed "retranslocation" as N content decreased without change of dry weight at N, P, K fertilization, but "dilution" state at NPK fertilization. This result suggested that optimal fertilization was required for F. rhynchophylla and F. mandshurica in seedling production stage, but was not essential for P. koraiensis and A. holophylla.

Development of lumped model to analyze the hydrological effects landuse change (토지이용 변화에 따른 수문 특성의 변화를 추적하기 위한 Lumped모형의 개발)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.233-252
    • /
    • 1994
  • One of major advantages of Lumped model is its ability to simulate extended flows. A further advantage is that it requires only conventional, readily available hydrological data (rainfall, evaporation and runoff). These two advantages commend the use of this type of model for the analysis of the hydrological effects of landuse change. Experimental Catchment(K11) of Kimakia site in Kenga experienced three phases of landuse change for sixteen and half years. The Institute of Hydrology offered the hydrological data from the catchment for this research. On basis of Blackie's(l972) 9-parameter model, a new model(R1131) was reorganized in consideration of the following aspects to reflect the hydrological characteristics of the catchment: 1) The evapotranspiration necessary for the landuse hydrology, 2) high permeable soils, 3) small catchment, 4) input option for initial soil moisture deficit, and 5) othel modules for water budget analysis. The new model is constructed as a 11-parameter, 3-storage, 1-input option model. Using a number of initial conditions, the model was optimized to the data of three landuse phases. The model efficiencies were 96.78%, 97.20%, 94.62% and the errors of total flow were -1.78%, -3.36%, -5.32%. The bias of the optimized models were tested by several techniques, The extended flows were simulated in the prediction mode using the optimized model and the data set of the whole series of experimental periods. They are used to analyse the change of daily high and low-flow caused by landuse change. The relative water use ratio of the clearing and seedling phase was 60.21%, but that of the next two phases were 81.23% and 83.78% respectively. The annual peak flows of second and third phase at a 1.5-year return period were decreased by 31.3% and 31.2% compared to that of the first phase. The annual peak flow at a 50-year return period in the second phase was an increase of only 4.8%, and that in the third phase was an increase of 12.9%. The annual minimum flow at a 1.5-year return period was decreased by 34.2% in the second phase, and 34.3% in the third phase. The changes in the annual minimum flows were decreased for the larger return periods; a 20.2% decrease in the second phase and 20.9% decrease in the third phase at a 50-year return period. From the results above, two aspects could be concluded. Firstly, the flow regime in Catchment K11 was changed due to the landuse conversion from the clearing and seedling phade to the intermediate stage of pine plantation. But, The flow regime was little affected after the pine trees reached a certain height. Secondly, the effects of the pine plantation on the daily high- and low-flow were reduced with the increase in flood size and the severity of drought.

  • PDF

Mechanisms of Cold Injury and Cultural Practices for Reducing Damage of Rice (벼 냉해발성 기작과 피해 경감대책)

  • Lee, Moon-Hee;Park, Nam-Kyu;Park, Suk-Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.34-44
    • /
    • 1989
  • The stability of rice cultivation in Korea is largely depended on climatic conditions, especially, low temperature at the period of early growth stage and after heading. The improvement of cold tolerant varieties and appropriate cultural practices in rice are very effective to minimize the cold damage. This paper is summarized the mechanism and counterplans of cold injury of rice plants. The paddy area having commonly cold injury in Korea is approximately 15, 522ha in 1,709 sites on the national scale. The cold damage at seedling stage in nursery bed appeared to poor germination, leaf discoloration, dead seedlings and seedling rot ect.. At the vegetative stage, the decreased tiller number due to poor rooting and the delayed heading caused by slow growth and panicle differentiation are commonly showed. The cold injury at early reproductive stage appeared to the degeneration of spikelets and rachis - branches, while that at meiosis stage showed to increased sterility due to poor development of pollen and shortened panicle length with delaying heading, therefore the grain yield is largely decreased. The cold damage at heading and ripening stages showed to poor pollination and fertilization, low panicle exsertion, poor grain filling and finally grain quality became low. To minimize the cold injury to rice plants by low temperature, following counterplans would be recommonded ; Improvement of the cold toelrant rice varieties for the regions of midmountains and alpines. Raising healthy seedlings at upland nursery beds and by using of growth regulators such as ABA, Fuchiwang and Tachiace. Soil improvement and organic matter application to reduce cold damage by increasing water and fertilizer holding capacities in the paddy field having commonly cold water and in the place where cold damage is regularly occurred. Appropriate fertilization for raising healthy rice plants to tolerate under low temperature condition. Water management to increase water temperature in the paddy such as depth watering, round channels and polyethylene tubes around the field. Establishment of the optimum cultivation time of rice based on minimum, mean and maximum temperatures at different regions with appropriate rice varieties.

  • PDF

Methods of Application and Beneficial Effects of Silicate-Coating Rice Seeds (볍씨의 규산코팅방법에 따른 이용특성과 육묘효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Hwang, Duck Sang;Kim, Hee Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.30-39
    • /
    • 2020
  • A new silicate coating technology was developed which reduces the impact of dust and loosening during seeding compared to existing silicate-coatings (Seed/Si/Zeolite), and therefore can lower the production costs of rice cultivation. In this method, 100 g of rice seed is coated with 18 mL of liquid silicic acid and then dressed with a mixture containing 80 g of dolomite and 5 g of iron. To determine the most effective method of application and ensure that seedlings developed healthily, a series of experiments were carried out. Infected seeds scattered in seedling boxes and pots (soil and hydroponic) were coated dry, without disinfection. In comparison to the seed which were not treated with the silicate-coating, the new seed (A) were 1.84 times heavier in weight, and were also improved in terms of coating strength and coating color. Compared to the seedlings grown from the non-coated seed, those grown from the new silicate-coated seed were of significantly higher quality (weight/length) and had erect, dark greenish leaves, which are ideal plant characteristics. This was most likely due to increased silicate uptake. The symptoms of bakanae disease in the non-coated seed peaked after 38 days to 54.2%, whereas the control value was 68.8% in the new silicate-coated seed (A). In the infected seedlings grown from the new silicate-coated rice seed, subnormal macro-conidia, namely, a sickle shape spore without a septum; a straight oblong shape spore without a septum and with a thick cell wall; and inter-septal necrosis of a normal spore were detected. It is believed that the strong alkalinity of silicic acid have acted as unfavorable conditions for pathogenicity. In seedlings grown from the new silicate coated rice seed under hydroponic conditions without nutrients, normal root activity and growth was maintained without leaf senescence. Therefore, it was possible to reduce the rate of fertilization. In the future, a new silicate-coated rice seed was required for the study of minimal nutrition for anti-aging of seedlings.

Breaking Physical Dormancy with Sulfuric Acid in Seeds of Lespedeza tomentosa (Thunb.) Siebold ex Maxim (황산처리를 이용한 개싸리 종자의 물리적 휴면 타파)

  • Rhie, Yong Ha;Choi, Han;Lee, Su Gwang;Lee, Jeong Ho;Lee, Ki Cheol
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.136-142
    • /
    • 2016
  • Lespedeza species are mainly used for wildlife food and cover and for erosion control. The germination of these species can be enhanced after a fire occurrence in forest, which is known as fire-activated seeds to germinate. While the heat treatment could break seed dormancy of Lespedeza, its germination rate was quite low. We investigated that chemical scarification could promote germination of L. tomentosa. Seeds were soaked in 100% sulfuric acid (H2SO4) for 0, 1, 3, 6, 12, 24, 48, 96, 192, and 384 min, and then washed in distilled water for 24 h. Very few seeds were germinated in control (H2SO4 for 0 min). More than 90% of seeds were germinated in H2SO4 for 24, 48, and 92 min. However, some damage was observed in roots and cotyledons of seedling dipped in H2SO4 for a long time. To search the optimal soaking time in H2SO4 without defects, seeds scarified in H2SO4 for 30, 60, 90, 120, 150, 180, and 300 min were sown the commercial soil medium. Seeds treated with H2SO4 for 90 min and 150 min emerged by about 92% and 84%, respectively. Therefore, H2SO4 treatment could break the seed dormancy of Lespedeza species, and especially in case of L. tomentosa the optimal treatment time in sulfuric acid was one to two hours. Germination of L. tomentosa began promptly following the scarification and was completed within about one month, indicating that seeds has no physiological dormancy, just has physical dormancy.

Studies on the Characteristics of Germination and Emergence of Tall Panicum(Panicum dichotomiflorum Michx.) (미국개기장(Panicum dichotomiflorum)의 발아(發芽) 및 출아(出芽) 특성(特性)에 관한 연구(硏究))

  • Kim, M.;Shim, S.I.;Lee, S.G.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.146-153
    • /
    • 1998
  • This experiment was conducted to clarify the characteristics of germination and emergence of Panicum dichotomiflorum which is a noxious weed species in direct-seeded rice field. P. dichotomiflorum was planted with several treatments such as different depths of irrigation to verifiy the ecological habits of seedling emergence and growth. In order to know the germination characteristics, Panicum dichotomiflorum seeds, pretreated with low-temperature($4^{\circ}C$) stratification for breaking the dormancy, were germinated under different temperature regimes and water potentials. Germination rates of P. dichotomiflorum was increased from 0% of dormant seed to 1%, 35% and 44% by stratification for 21, 28 and 42 days, respectively. Two dominant weed species in directseeded rice fields, Echinochloa crus-galli and Panicum dichotomitlorum, showed different germination habit under different temperature regimes. Echinochloa crus-galli showed more higher germination rate than Panicum dichotomiflorum at relatively low temperature regime(20/$10^{\circ}C$). Both species germinated faster at 30/$20^{\circ}C$ than at 20/$10^{\circ}C$. When the water potential was lowered, germination of Panicum dichotomiflorum was reduced more drastically than Echinochloa crus-galli. The critical water potential for germination of P. dichotomiflorum was -0.7MPa but Echinochloa crus-galli was affected slightly by the same water potential. The results showed that Echinochloa crus-galli can germinate under more wide range of soil water potential than Panicum dichotomiflorum. Emergence of P. dichotomiflorum was highly affected by irrigation depth and the level of water table. When the depth of irrigation water was increased, emergence of P. dichotomiflorum was dragged and emergence rate showed significant difference under the irrigation depth deeper than 6cm. The maximum depth of irrigation water for survival of Panicum dichotomiflorum seedling was 9cm.

  • PDF

Experimental Study on Modular Community Planting for Natural Forest Restoration (자연림 복원을 위한 모듈군락식재 실험연구)

  • Han, Yong-Hee;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.338-349
    • /
    • 2022
  • This study aims to investigate whether modular community planting, which entailed planting a variety of species of seedlings at high density, was more effective in restoring natural forests than the existing mature tree planting. We also investigated whether the planting density of the modular community planting facilitates growth or improves the tree layer coverage. We conducted outdoor experiments in which the samples were divided into a mature tree planting plot (control plot), where mature trees were planted at wide intervals, and a modular community planting (MCP) plot (treatment plot), where multiple seedlings were planted in high density. The MCP plot was further divided into the plot in which 3 seedlings were planted per m2 and the plot of 1 seedling per m2. We measured the specimens' survival rate, growth rate (tree height, crown width, and root collar diameter), and cover rate for 26 months from May 2019 and the predicted future tree height growth using the measured tree height. The survival rate and relative growth rate of the MCP were higher than those of the mature tree planting plot. The vertical coverage rate of the tree crown in the MCP exhibited complete coverage of the ground before 23 months, while the coverage rate of the mature tree planting decreased due to transplantation stress. The seedlings in the MCP, which were planted at high density, grew well and were predicted to grow higher than the mature trees in the large tree planting plot within 5 to 6.5 years after planting. It was due to multiple species, seedlings, high-density planting, and planting foundation improvements, such as soil enhancement and mulching. In other words, the seedlings planted in the MCP had a higher survival rate as their environmental adaptation after planting was better, and their early growth was also larger than the trees in the mature planting plot. The high-density mixed planting of various native species not only mitigated the inter-complementary environmental pressures but also facilitated growth by inducing competition between species. Moreover, the planting foundation improvement effectively increased the seedlings' viability and growth rate. A reduction in follow-up management costs is expected as the tree layer coverage sharply increases due to the higher planting density. In the MCP (3 seedlings per m2 and 1 seedling per m2), the tree height growth was promoted with the higher planting density, and the crown width and root collar diameter tended to be larger with the lower planting density, but these differences were not statistically significant.