• Title/Summary/Keyword: seed coat

Search Result 357, Processing Time 0.031 seconds

Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Kim, Seok-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate's treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.

Introduction of Stay Green Mutant for the Development of Black Seed Coat and Green Cotyledon Soybean Variety (녹색자엽 검정콩 품종 육성을 위한 Stay green 변이체 활용)

  • Kang, Sung-Taeg;Seo, Min-Jung;Moon, Jung-Kyeong;Yun, Hong-Tae;Lee, Young-Ho;Kim, Si-Ju;Hwang, Young-Sun;Lee, Suk-Ki;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.187-194
    • /
    • 2010
  • The soybean stay green mutant genotype (SSG) derived from the nuclear gene, d1d2, and cytoplasmic gene, cytG, inhibit the breakdown of chloroplast in the leaves, pod walls, seed coats, and embryos during maturity. Soybean seed with black seed coat and green cotyledon (SBG) are preferred than black seed coat with yellow cotyledon (SBY) especially for cooking with rice and as source of traditional food in Korea. The researchers evaluated the seed's chlorophyll content of SSG and introduced SSG to the SBG variety breeding program. The seed chlorophyll content of SSG with d1d2 was $39.93{\sim}60.80\;{\mu}g/g$ and SSG with cytG $38.08{\sim}39.89\;{\mu}g/g$. The Korean SBG variety which was derived from SSG with cytG, contains $16.35{\sim}37.73\;{\mu}g/g$. The composition of seed chlorophyll differs according to the genetic background of SSG genotype. Inheritance study showed that cotyledon color was segregated 15:1 (yellow:green) at $F_2$ seed indicating two recessive genes control green cotyledon as revealed by previous study. Only less than 3% soybean lines showed black seed coat with green cotyledon among crosses SBY and SSG (d1d2). Results showed that SSG with d1d2 can be used as a good source for SBG with high chlorophyll content in the seed cotyledon, but due to the complex genetic behavior, breeding resource of SBG with d1d2 should be prepared to improve the breeding efficiency for development SBG variety.

Antioxidant and Tyrosinase Inhibitory Activities from Seed Coat of Brown Soybean

  • Lee, Jin-Hwan;Baek, In-Youl;Ko, Jong-Min;Kang, Nam-Suk;Shin, Seong-Hyu;Lim, Sea-Gyu;Oh, Ki-Won;Shin, Sang-Ouk;Park, Keum-Yong;Park, Ki-Hun;Ha, Tae-Joung
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Soybeans with brown, black, and yellow seed coats were compared to total phenolic contents and antioxidant activities including 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals. Also, 3 seed coats were examined for inhibitory activities on tyrosinase and lipoxygenase-1 on the basis of spectrophotometric and polarographic methods. Among seed coat extracts, 80% methanol extract of brown soybean seed coat showed the highest total phenolic contents ($68.9{\pm}3.29\;mg$ GAE/g) as well as exhibited potent scavenging effects on the DPPH ($IC_{50}=4.3\;{\mu}g/mL$) and ABTS ($IC_{50}=3.7\;{\mu}g/mL$) radicals. In a polarographic experiment, this extract was potentially inhibited the oxidation of L-tyrosine and L-3,4-dihydroxy-phenylalanin (L-DOPA) catalyzed by mushroom tyrosinase with $IC_{50}$ values of 12.4 and $63.7\;{\mu}g/mL$, respectively. It was also detected inhibition of the tyrosinase catalyzed oxidation of L-DOPA with an $IC_{50}$ value of 120.3 mg/mL in UV spectrophotometric experiment. In addition, this extract inhibited the linoleic acid peroxidation catalyzed by lipoxygenase-1 with an $IC_{50}$ value of $4.0\;{\mu}g/mL$. These results suggest that brown soybean may possess more beneficial effect on human health than black and yellow soybeans.

Breeding of Green Soybean Strain with Green Cotyledon and Tetra Null Genotype (Tetra null 유전자형과 녹색종피 및 자엽을 가진 콩 계통 육종)

  • Sarath Ly;Jeong Hwan Lee;Hyeon Su Oh;Se Yeong Kim;Jin Young Moon;Jong Il Chung
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.632-638
    • /
    • 2023
  • A soybean cultivar with a green seed coat and cotyledon contains high levels of lutein, which is beneficial for eye health. Plus, antinutritional components such as lipoxygenase, Kunitz trypsin inhibitor (KTI), lectin and stachyose exist in the mature seed. The genetic elimination of these antinutritional factors is a necessary step in green soybean breeding. This research was conducted to improve a new green soybean line with the green cotyledon and tetra null genotype (lox1lox2lox3tilers2) in terms of lipoxygenase, KTI, lectin and stachyose. We used five germplasms to develop a breeding population. A total of 69 F2 seeds were obtained from the cross of parent 1 and parent 2, and from those, 21 F2 seeds were selected that had the green seed coat color, and which were free of lectin protein. Next, four F2 plants with the green seed coat and tetra null genotype were selected from the breeding population derived from four genotypes. The absence of lipoxygenase, KTI and lectin proteins was confirmed in the F5 strain. The breeding line has a green seed coat, green cotyledon and white hilum color. The 100-seed weight and stachyose content for the breeding line were 30.7 g and 2.40 g/kg, respectively. The line selected in this study could be used as a cultivar or parent to improve colored soybean cultivars through the removal of antinutritional components such as lip- oxygenase, KTI, lectin and stachyose.

Effects of Scarification and Water Soaking Treatment on Germination of Hard-Seeded Legumes (두과 작물의 경실종자 발아촉진에 대한 종피연화처리의 효과)

  • Kim, Seok-Hyeon;Chang, Mi-Ha;Chung, Jong-Il;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.320-326
    • /
    • 2009
  • The crops showing hard seed character have high seed viability after seed storage for long period. The low germination rate due to hard seed coat, however, cause a problem of low seedling establishment in field condition. Three legumes used in the experiment, lablab bean (Dolichos lablab L.), asparagus bean (Vigna sesquipedalis L. Fruwirth), and soybean (Glycine max L. Merr.), showed low germination rate (26, 17, and 5%, respectively) due to thick and hard seed coat. In this study artificial treatment for breaking dormancy was tested in hard seeds. The effect of proper treatment was various depending on species. The germination rate of lablab bean was highly improved up to 94% by soaking into water for 24 hours. In the case of asparagus bean, the rate was increased up to 90% by soaking for eight hours near boiling water until it cools. The germination rate of small hard seed soybean was increase to 96% by soaking into concentrated sulfuric acid for 10 minutes. Ultrastructural change revealed by scanning electron microscope (SEM) reflects that the structure of micropyle was changed and water uptake was facilitated with all treatments tested in the experiment. Especially, sulfuric acid treatment resulted in the degradation of micropylar tissue. These results demonstrate that the artificial treatment including sulfuric acid and (hot) water soaking treatment for promoting water uptake can be applied to improve seed germination in legume seed with thick and hard seed coat.

Seed-borne Infection of Anthracnose Fungi Isolated from Diseased Red Pepper (병든 고추 종자에서 분리된 탄저병균의 종자전염)

  • Lee, Du-Hyung
    • The Korean Journal of Mycology
    • /
    • v.23 no.2 s.73
    • /
    • pp.114-120
    • /
    • 1995
  • Colletotrichum dematium, C. gloeosporioides and Glomerella cingulata were detected in seed samples collected from diseased red pepper (Capsicum annuum) using blotter method. C. gloeosporioides was the predominant species in seed samples tested and followed by C. dematium and G. cingulata. When the seed components were plated C. dematium, C. gloeosporioides and G. cingulata were detected from seed coat, endosperm and cotyledon. The three anthracnose fungi were recorded more frequently from seed coat than that of observed in the endosperm and cotyledon. Seed infection with C. dematium, C. gloeosporioides and G. cingulata caused seed rotting, damping off and seedling blight of red pepper plants. According to the inoculation experiments, it was shown that C. gloeosporioides was the most virulent among three species. C. dematium showed weak virulence when the plants were wounded, and G. cingulata was wound parasite or weakly virulent on red fruits. Benlate T (benomyl+thiram) and Homai (thiophnate-methyl+thiram) were effective to anthracnose fungi when treated to infected seeds.

  • PDF

Colonization and Population Changes of a Biocontrol Agent, Paenibacillus polymyxa E681, in Seeds and Roots

  • Park, Okhee;Kim, Jinwoo;Ryu, Choong-Min;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2004
  • Paenibacillus polymyxa E681, with its plant growth promotion and root colonization ability, has been proven to be a promising biocontrol agent of cucumber and barley. This study investigated the attributes related to the movement of bacteria from the seed to the radicle and to the whole root system. It also illustrated the existing form and population changes of the bacteria on seed and root using the scanning electron microscope and confocal laser scanning microscopy. The bacteria invaded and colonized the inside of the seed coat while the seeds were soaked in bacterial suspension. Almost the same number of bacteria on seed surface invaded the inside of the seed coat right after seed soaking. The population densities of E681 increased greatly inside as well as on the surface of the seed before the radicle emerged. The bacteria attached on the emerging radicle directly affected the initial population of newly emerg-ing root. The colonized cells on the root were arranged linearly toward the elongation of the root axis. In addition to colonizing the root surface, strain E681 was found inside the roots, where cells colonized the inter-cellular space between certain epidermal and cortical cells. When the cucumber seeds were soaked in bacterial suspension and sown in pot, the bacterial populations attached on both the surface and inside of the root were sustained up to harvesting time. This means that E681 successfully colonized the root of cucumber and sustained its population density up to harvesting time through seed treatment.

Oil Contents and Fatty Acid Composition of Korean Perilla (Perilla ocimoides L.) Collections

  • Hong, Seong-Taek;Son, Suk-Yeong;Jong, Seung-keun;Rho, Chang-Woo;Yun, Jong-Sun
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.215-220
    • /
    • 2003
  • This study was carried out to obtain informations on the variations of oil content and fatty acid composition among 90 Korean perilla collections. Average oil content of 90 perilla collections was 44.2% with a range from 29.7% to 61.9%. Perilla collections with late-maturing, super-large seed and gray seed coat showed higher oil content than other types in general. Average saturated fatty acid content in perilla oil was 9.0% with a range from 8.2% to 10.7%, while average unsaturated fatty acid content varied from 89.3% to 91.8% with a mean of 91.0%. Contents of saturated and unsaturated fatty acids were not related to maturity. There were no differences in the contents of saturated and unsaturated fatty acids according to maturity. Linoleic acid and linolenic acid contents were the highest in the super large-sized group(15.5%) and in the large-sized seed group(61.4%), respectively, while contents of fatty acids among the perilla collections were variable with different seed coat colors. Most of the traits studied were not significantly correlated with oil content, but linoleic acid($\omega$-6) content was negatively correlated (r=-0.217*) with linolenic acid($\omega$-3) content.

  • PDF

Effect of Seed Size on Seedling Performance in Panax g.inseng (종자의 크기가 묘삼의 생육에 미치는 영향)

  • Kim, Jong-Man;Lee, Seong-Sik;Kim, Yo-Tae
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.85-91
    • /
    • 1981
  • Ginseng seeds were gathered from 3,4,5 and 6 years of age and were classified into four qroups (below 4mm, 4∼5mm, 5∼6mm and above 6mm in across sieve). They were sown in seedling bed and some characters were investigated in each qroup of seed size. 1. The distribution of seed size of below 4mm, 4-5mm, 5-6mm and 6mm were 23.7%, 60.8%, 12.4% and 4.5%, respectively. 2. The ratio of seed coat dehiscence was not affected by seed size but emergence ratio and emerging vigor were superior in large seed. 3. The large seed showed superiority in stem length, stem diameter, leat and also in root length, root diameter and root weight. but diseased root was not affected by seed size. The effect of age(seed harvest) was not significant on all those characters.

  • PDF

Seed and Germination Characteristics by the Seed Coat Colors of Three Species of Genus Pinus (소나무류 3수종의 종피색깔에 따른 종자 및 발아특성 비교)

  • Choi, Chung-Ho;Kim, Sun-Young;Seo, Byeong-Soo;Park, Woo-Jin
    • Korean Journal of Plant Resources
    • /
    • v.20 no.2
    • /
    • pp.150-154
    • /
    • 2007
  • This study was carried out to increase germination by classifying seeds as seed coat colors of three species of genus Pinus. As result, the seeds classified as colors showed a difference. In seed length, Pinus densiflora (Pd) and P. thunbergii (Pt) had no difference while P. rigitaeda (Pr) had a difference between light yellow seeds and dark brown seeds (p<0.05). Only Pt was different in seed width. And in 1,000 seeds weight the three species showed a great difference while were not significantly different in seed moisture contents. In percent germination, all of the three species had a difference, especially that of Pr was very wide. Pd and Pt were not different in mean germination time but Pr showed a difference between light yellow seeds and dark brown seeds.