• Title/Summary/Keyword: sedimentary environments

Search Result 150, Processing Time 0.031 seconds

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Geochemistry and Mineralogy of Metapelite and Barium-Vanadium Muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea (덕평지역(德平地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 변성이질암(變成泥質岩)과 바륨-바나듐 백운모(白雲母)의 지구화학적(地球化學的) 및 광물학적(鑛物學的) 특성(特性))

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.35-49
    • /
    • 1997
  • The coal formation of the Deokpyeong area are interbedded along metapelites of the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with small amounts of biotite, chlorite, pyrite and barite. The ratios of $SiO_2/Al_2O_3$, $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ of the coaly metapelite are variable and wide range from 1.80 to 10.21, from 27.8 to 388.8 and from 7.6 to 61.8, respectively. These coal formation were deposited in basin of marine environments, and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, the ratios of La/Ce (0.19 to 0.99) and Th/U (0.02 to 4.75). These rocks also show much variation in $La_N/Yb_N$ (1.19 to 22.89), Th/Yb (0.14 to 21.43) and La/Th (0.44 to 13.67), and their origin is explained by derivation from a mixture of sedimentary and igneous rocks. The wide range in trace and REE element characteristics as Co/Th (0.12 to 2.78), La/Sc (0.33 to 10.18), Sc/Th (0.57 to 5.73), V/Ni (8 to 2347), Cr/V (0.02 to 0.67) and Ni/Co (1.56 to 32.95) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation. Deep to pale green barium-vanadium muscovites (vanadium-oellacherite) have been found in this coal formations. Modes of occurrence and grain size of muscovite are heterogeneous, but most of the barium and vanadium-bearing muscovites occur along the boundaries between graphite and quartz grains, ranging from 200 to $350{\mu}m$ in length and from 40 to $60{\mu}m$ in width. Results of X-ray diffraction data of the minerals characterized to be monoclinic system with $a=5.249{\AA}$, $b=8.939{\AA}$, $c=20.924{\AA}$ and ${\beta}=95.894^{\circ}$. Representative chemical formula of the muscovite was $(Na_{0.09}K_{1.44}Ba_{0.46})(Al_{2.75}Ti_{0.07}V_{0.56}Fe_{0.08}Mg_{0.50})(Si_{6.12}Al_{1.88})O_{22}$. The V possibly substitute octahedral Al, and the Ba is coupled substitution of $K^+Si^{4+}=Ba^{2+}Na^+Ca^{2+}$, which compositional ranges of V and Ba are from 0.42 to 0.69 and from 0.34 to 0.56 based on $O_{22}$, respectively. Formation mechanism of the barium-vanadium muscovites in the coaly metapelite is shown that the formed by high pressure and temperature from regional metamorphism origanated during diagenesis at the interface between a basinal brine and organic matter.

  • PDF

The relationship between the residual of Taean Mado shipwreck No.3 and physical properties of sediments (태안 마도3호선 잔존과 퇴적물 물성의 연계성)

  • Lee, Sang-Hee;Jung, Yong-Hwa;Lee, Young-Hyun;Kim, Jin-Hoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.269-275
    • /
    • 2017
  • Shipwreck remains below the seabed not only effect the ocean currents and tides, but influence the physical properties of sediments and sedimentary environments that comprise the seabed. In particular, the influence of local shipwrecks discovered buried in the seabed on the sediment is visible. In this study, sediments were collected from the surrounding area of Taean Mado No.3 shipwreck using grab samplers and vibro-corers. The physical properties of these sediments were analyzed to evaluate the impact of the Taean Mado shipwreck No.3 remains. Sediment core analysis by means of density and ultrasonic velocity showed that shear strength tended to increase with depth, whereas moisture content and porosity tended to decrease with depth. Grain size analysis results are shown in terms of Folk's classification, where the grain size of the core samples in the study area indicate mud or sandy mud, and that of the grab sample indicates a muddy sand. Results of the sedimentation rate analysis indicate a rate of 2.84 cm/year and carbon dating of the 150 cm deep seashell indicates the Neolithic age. These sediments were analyzed for the study of the relationship between the Taean Mado shipwreck No.3 remains and the physical properties of the sediment.

Mineralogy, Geochemistry, and Formation of Ferromanganese Nodules from the KONOD-1 Site, Northeastern Equatorial Pacific (북동(北東) 적도(赤道) 태평양(太平洋)(KONOD-1) 망간 단괴(団塊)의 은물조성(銀物組成), 화학분석(化學成分)과 성인(成因))

  • Kang, Jung-Keuk;Han, Sang-Joon
    • 한국해양학회지
    • /
    • v.23 no.3
    • /
    • pp.110-122
    • /
    • 1988
  • Between the Clarion and Clipperton fracture zones of the Northeastern Pacific, nodules and crusts were collected from abyssal plain and hills by the Korea Ocean Research and Development Institute in December, 1983 aboard the R/V KANA KEOKI of the Hawaii Institute of Geophysics. Mineralogical and geochemical data of bulk nodules are obtained and compared with analyses of other studies. Mechanisms of nodule formation are discussed based on these data. Generally, the nodules of the KONOD-1 site are composed of todorokite and ${\delta}-MnO_2$. The contents of Mn, Fe, Ni, and Cu of the bulk nodules are variable and the average contents of metals are slightly lower (Mn, 21.40%; Ni, 0.9%; Cu, 0.8%) than those of nodules from other abyssal plains between the Clarion and Clipperton fracture zones. High Mn/Fe (average 3.9; maximum 5.9) and Cu/Ni (average 0.8; maximum 1.0) ratios are similar to the nodules that were formed diagenetically in the northeast Pacific. The chemical characteristics of the KONOD-1 nodules reflect their sedimentary environments; nodules with higher diagenetic signatures occur in areas of thin Quaternary siliceous ooze, and nodules of lower diagenetic influence occur in topographically irregular abyssal hill areas.

  • PDF

Analyses of Mineral Composition and Grain Size of the Sandstones from the Daedong Group (대동층군(大同層群) 사암(砂岩)의 광물성분(鑛物成分)과 입도분석(粒度分析)에 관(關)하여)

  • Yu, Kang Min
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.277-288
    • /
    • 1985
  • Mineral composition and grain size analyses of the sandstone from the Early Jurassic Daedong Group distributed in Mungyeong, Daecheon, Kimpo and Yeoncheon areas were made for the study of provenances and depositional environments. The most of the analyses are obtained from Mungyeong area, with some preliminarly works from Daecheon, Kimpo and Yeoncheon areas. All sandstones from the study area are characterized by high content of quartz ranging from 59.8 to 87.2 percent of total constituents. Many of quartz which has rounded dust ring seems to come from aeolian sediments. Content of feldspar is very low except Daecheon area where it ranges from 1.8 to 10.0 percent. Sandstones from Mungyeong, Kimpo and Yeoncheon areas are classified as quartz and quartzose arenite/wacke, while those from Daecheon area are classified as quartzose and lithic arenite/wacke. According to the character of the sandstones, provenance could be quartzose sandstone and quartzite. Results of grain size analysis of C-M and sorting versus skewness suggest that depositional environment seems to be fluvial, while log-probability curve pattern lacustrine environment. It is hard to derive a definite conclusion of sedimentary environment by the grain size analysis.

  • PDF

Genetic Environments of Hydrothermal Copper Deposits in Ogsan Mineralized Area, Gyeongsangbukdo Province (경북 옥산지역 열수동광상의 성인연구)

  • Choi, Seon-Gyu;Choi, Sang-Hoon;Yun, Seong-Taek;Lee, Jae-Ho;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.233-243
    • /
    • 1992
  • Ore mineralization of the Hwanghak copper deposit in the Ogsan area occurred in three stages of quartz (stage I and II) and calcite (stage III) veining along fissures in Early Cretaceous sedimentary rocks. Ore minerals are pyrite, pyrrhotite, chalcopyrite (dominant), sphalerite, hematite, galena, and Ag-, Pb-, and Bi-sulfosalts. These were deposited during the first stage at temperatures between $370^{\circ}C$ and < $200^{\circ}C$ from fluids with salinities between 0.5 and 7.6 equiv. wt. % NaCl. There is evidence of boiling and this suggests pressures of less than 180 bars during the first stage. Equilibrium thermodynamic interpretation accompanying with mineral paragenesis and fluid inclusion data indicates that copper precipitation in the hydrothermal system occurred due to cooling and changing in chemical conditions ($fs_2$, $fo_2$, pH). Gradual temperature decrease from $350^{\circ}$ to $250^{\circ}C$ of ore fluids by boiling and mixing with less-evolved meteoric waters mainly led to copper deposition through destabilization of copper chloride complexes. Sulfur isotope values of sulfide minerals decrease systematically with paragenetic time from calculated ${\delta}^{34}S_{H_2S}$ values of 8.2 to 4.7‰. These values, together with the observed change from sulfide-only to sulfide-hematite assemblages and fluid inclusion data, suggest progressively more oxidizing conditions, with a corresponding increase of the $sulfate/H_2S$ ratio of hydrothermal fluids. Measured and calculated hydrogen and oxygen isotope valutls of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values.

  • PDF

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

Contrasting Sources of Plant Wax n-alkanes and n-alkanoic Acids in Gulf of Mexico Sediments (ODP 625B) (멕시코만 코어 퇴적물(ODP 625B)의 식물왁스 탄화수소(n-alkanes)와 지방산(n-alkanoic acids)의 생성기원 비교 연구)

  • Suh, Yeon Jee
    • Ocean and Polar Research
    • /
    • v.41 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • Long chain plant waxes (n-alkanes, n-alkanoic acids, and n-alcohols) and their carbon isotopic compositions (${\delta}^{13}C$) in geologic archives are valuable tools for paleovegetation reconstruction. However, the sensitivity of different plant wax constituents to vegetation shift is not well understood. This study explores controls on the variation in ${\delta}^{13}C$ values of long-chain n-alkanes ($C_{27}$ to $C_{33}$) and n-alkanoic acids ($C_{26}-C_{30}$) in the Gulf of Mexico core sediments (ODP 625B) near the Mississippi River delta. n-Alkanoic acids' ${\delta}^{13}C$ values were higher than those of n-alkanes by 1-2‰ on average and such a pattern is the opposite from their isotope fractionation observed in living plants: 1-2‰ smaller in n-alkanes than n-alkanoic acids. We attribute this offset to contributions from aquatic plants or microbes that produce high concentrations of $^{13}C-enriched$ long-chain n-alkanoic acids. The sensitivity of n-alkanes and n-alkanoic acids to vegetation and climate varied among chain lengths. The $n-C_{33}$ alkanes were most sensitive to $C_4$ grassland expansion among n-alkane homologues, while no specific trend was observed in n-alkanoic acids. This is due to the similarity in n-alkanoic acid concentrations between $C_3$ and $C_4$ plants by homologues and low terrestrial plant-derived n-alkanoic acid contributions to the sediments. The results of this study suggest that long chain n-alkanoic acids' ${\delta}^{13}C$ values in sediments may be influenced by contributions from different sources such as aquatic plants or microbial inputs and therefore interpretations regarding this matter should be cautiously formulated. We suggest that there is a need for further studies on characterizing long-chain n-alkanoic acids ($C_{26}-C_{34}$) in aquatic plants and microbes from various climates and environments in order to investigate their production and integration into sedimentary archives.

The Development of Geosites and 3D Panoramic Geological Virtual Field Trips for Sinsu Island in Korea National Marine Park (남해 해상 국립공원 신수도의 지질명소 및 3D 파노라마 야외학습장 개발)

  • Cho, Jae-Hee;Yoon, Ma-Byong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.91-102
    • /
    • 2022
  • Sinsu Island in Korea National Marine Park is suitable for geological learning and geotourism as various geological structures, geological activities, and fossils can be observed. In this study, eight geosites were developed by analyzing 2015 revision science curriculum. The 3D panoramic geological virtual field trips were developed according to the three-step outdoor learning model. The 3D panoramic geological virtual field trips, which consist of 8 classes, are composed of cooperative learning by group, enabling autonomous inquiry activities. It is designed to realize convergence education that can learn not only geology but also creativity and humanity through nodular Limestones, exfoliation, salt weathering, perforated shell holes, sedimentary structures and environments, dinosaurs habitats, and volcanic activity. Five experts revised and supplemented the Delphi analysis method to verify the validity of the development purpose and direction. The satisfaction with the geological field for Sinsu Island course was 4.52, indicating that the overall satisfaction with the field course was high. By reflecting on the opinions of each student and reinforcing safety education, we completed the 3D panoramic geological virtual field trips for Sinsu Island. The 3D panoramic geological virtual field trips in Sinsu Island in Korea National Marine Park will be a good example of geology learning tourism where you can make memories and enjoy while studying geology.

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.