• Title/Summary/Keyword: sediment model

Search Result 803, Processing Time 0.031 seconds

Prediction of Beach Profile Change Using Machine Learning Technique (머신러닝을 이용한 해빈단면 변화 예측)

  • Shim, Kyu Tae;Cho, Byung Sun;Kim, Kyu Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.639-650
    • /
    • 2022
  • In areas where large-scale sediment transport occurs, it is important to apply appropriate countermeasure method because the phenomenon tends to accelerate by time duration. Among the various countermeasure methods applied so far, beach nourishment needs to be reviewed as an erosion prevention measure because the erosion pattern is mitigated and environmentally friendly depending on the particle size. In the case of beach nourishment. a detailed review is required to determine the size, range, etc., of an appropriate particle diameter. In this study, we investigated the characteristics of the related topographic change using the change in the particle size of nourishment materials, the application of partial area, and the condition under the coexistence of waves and wind as variables because those factors are hard to be analyzed and interpreted within results and limitation of that the existing numerical models are not able to calculate and result out so that it is required that phenomenon or efforts are reviewed at the same time through physical model experiments, field monitoring and etc. So we attempt to reproduce the tendency of beach erosion and deposition and predict possible phenomena in the future using machine learning techniques for phenomena that it is not able to be interpreted by numerical models. we used the hydraulic experiment results for the training data, and the accuracy of the prediction results according to the change in the training method was simultaneously analyzed. As a result of the study it was found that topographic changes using machine learning tended to be similar to those of previous studies in short-term predictions, but we also found differences in the formation of scour and sandbars.

An Analysis of the Application Effect of LID Technology in Urban Inundation Using Two-Dimensional Model (2차원 모델을 이용한 도시침수지역에서의 LID기법 적용효과 분석)

  • Minjin Jung;Juho Kim;Changdeok Jang;Kyewon Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • The importance of preemptive flood preparation is growing as the importance of preparing for climate change increases due to record heavy rains in the Seoul metropolitan area in August 2022. Although it is responding to flood control through reservoirs and sediment sites, the government is preparing excellent spill reduction measures through a preliminary consultation system for Low Impact Development (LID). In this study, the depth of flooding was simulated when LID technologies were applied to the Sillim 2-drain region in Dorimcheon Stream basin, an urban stream, using XP-SWMM, a two-dimensional model. In addition, the analysis and applicability of the effect of reducing rainfall runoff for the largest rainfall in a day were reviewed, and it was judged to be effective as a method of reducing flooding in urban areas. Although there is a limitation in which the reduction effect is overestimated, it is thought that the LID technologies can be a significant countermeasure as a countermeasure for small-scale flooded areas where some flooding occurs after structural flooding measures are established.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF

Estimating Carrying Capacity of Lake Shihwa for Water Quality Management (수질관리를 위한 시화호의 환경용량 산정)

  • Kim, Hyung-Chul;Choi, Woo-Jeung;Lee, Won-Chan;Koo, Jun-Ho;Lee, Pil-Yong;Park, Sung-Eun;Hong, Seok-Jin;Jang, Ju-Hyoung
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.571-581
    • /
    • 2007
  • The mechanism of water pollution in Lake Shihwa, one of highly eutrophicated artificial lakes in Korea, has been studied using a numerical 3D physical-biochemical coupled model. In this study, the model was applied to estimate the contribution of land-based pollutant load to water quality of heavily polluted Lake Shihwa. The chemical oxygen demand(COD) was adopted as an index of the lake water quality, and the spatial distribution of an average COD concentration during the summer from 1999 to 2000 was simulated by the model. The simulated COD showed a good agreement with the observed data. According to reproducibility of COD, the high-est levels between 8 and 9 mg/L were shown at the inner site of the lake with inflow of many rivers and ditches, while the lowest was found to be about 5 mg/L at the southwestern site near to dike gate. In the pre-diction of water quality of Lake Shihwa, COD showed still higher levels than 3 mg/L in case of reduction of 95% for land-based pollutant load. This suggests that the curtailment of land-based pollutant load is not only sufficient but the improvement of sediment quality or the increase of seawater exchange should be considered together to improve a water quality in Lake Shihwa.

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.

A study on colored water treatment at purification plant (정수장 색수의 처리기법에 관한 연구)

  • Park, S.I.;Lee, J.H.;Lee, H.H.;Kim, H.B.;Ahn, G.W.;Park, K.N.;Kim, Y.K.;Bae, J.S.;Mun, H.;Park, C.U.;Oh, E.H.;Seo, Y.G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.55-61
    • /
    • 2001
  • There are many reservoirs used as the source of water supply and they show various specific characteristics in water quality depend seasonal. Especially, there were not a little variations of water quality in summer, as a natural consequence it follows that stratification occured phenomenon and changed anaerobic condition in the bottom of reservoir, and then accumulated Fe and Mn substance in soil and sediment were resolved into water, it attributes to coloration. G purification plant located in Y gun is very small plant in which coloration occurs by Fe and Mn in every summer. Using this plant as a model, the removal methods of Fe and Mn were studied. After prechlorination plus LAS coagulation, Fe, Mn, $NH_3-N$ were decreased from 7.290 mg/l to 0.080 mg/l, from 0.480 mg/l to 0.075 mg/l, from 0.55 mg/l to 0.04 mg/l. But $THM_{s}$ was increased from 0.050 mg/l to 0.044 mg/l. It shows that the prechlorination plus LAS coagulation treatment process in purification plant is effective to remove Fe and Mn ion.

  • PDF

Analysis on the Characteristics of the Infra-Gravity Waves inside and outside Pohang New Harbor using a Transfer Function Model (전달함수 모형을 이용한 포항신항 내·외의 외중력파 특성 분석)

  • Cho, Hong-Yeon;Jeong, Weon Mu;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.131-139
    • /
    • 2014
  • Infra-gravity waves (IGWs) with a period of 1~3 minutes are a factor that directly influences the motion analysis of moored ships inside a harbor and longshore sediment transport analysis. If significant levels of IGWs from far seas are transferred to a harbor and amplified, they may cause downtime of large ships and induce economic loss. In this study, transfer characteristics of the IGWs intruding from outside to inside Pohang New Harbor were analyzed using statistical analysis and transfer function of wave data measured at both outside and inside the harbor for around 5 years. Transfer characteristic analysis was limited to events where IGWs had wave heights above 0.1 m. The wave height distribution of inside the harbor was similar to that of outside the harbor, while the wave period variance of the former was larger than that of the latter. The parameters of the transfer function was optimally estimated according to each event. The estimated average RMS error of the wave height inside the harbor was around 0.013 m. The estimated parameters had a strong correlation with the linear combination information of IGW wave height, period, and direction (R = 0.95). The transfer function suggested in this study can quickly and easily estimate information on IGWs inside the harbor using IGW information predicted beforehand, and is expected to reduce damage due to unexpected restrictions on harbor usage.

A Study on the Applicability of GSTAR-1D to the Riverbed-Level Variation in the Geum River (GSTAR-1D 모형의 금강 하상변동예측 적용성에 관한 연구)

  • Chung, Sung-Young;Park, Bong-Jin;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1611-1615
    • /
    • 2006
  • The purpose of this study is to simulate the riverbed profile changes downstream of Daecheong re-regulation dam from 1988 to 2001, to evaluate the model's applicability and to predict a long-term riverbed-level variation between 2002 and 2017. As a result of simulation 14 sediment transport equations provided by GSTAR-1D, it was found that Acker's & White formula was the most stable relatively. The interval used to calculate its stability was 7 days for bankful discharge$(1,000m^2/s)$, 3 days for daily maximum flow$(4,273m^2/s)$, 1 day for hourly maximum flow$(7,605m^2/s)$ and minimum flow$(8.5m^2/s)$. The simulation results of river bed changes were evaluated and compared to its measure data from 1988 to 2001. It was showed that there was the degradation for a section between Daecheong re-regulation dam and Maepo water stage gage station due to bed-material, and the degradation for a reach between Maepo and Gongju water stage gage station due to massive aggregate collection. Also, as a result of simulating the river profile change for 2002 to 2017, it was predicted that the section between Daecheong re-regulation dam and Geumnam Bridge would remain as the present profile and the reach between Maepo and Gongju water stage gage station would have some degradations in several parts, which would be stable as a whole unless it was due to artificial river profile change.

  • PDF