• Title/Summary/Keyword: sediment erosion

Search Result 451, Processing Time 0.031 seconds

Evaluation of SWAT Applicability to Simulate Soil Erosion at Highland Agricultural Lands (고랭지 농경지의 토양유실모의를 위한 SWAT 모형의 적용성 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Sa, Gong-Myong;Ahn, Jce-Hun;Lim, Kyoung-Jae
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.67-74
    • /
    • 2005
  • The Doam watershed is located at alpine areas and the annual average precipitation, including snow accumulation, is significant higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. Also, extremely torrential rainfall, such as the typhoons 'RUSA' in 2002 and 'MAEMI' in 2003, caused significant amounts of soil erosion and sediment at the Doam watershed. However, the USLE model cannot simulate impacts on soil erosion of freezing and thaw of the soil. It cannot estimate sediment yield from a single torrential rainfall event. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The R$^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it is found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Two typhoons in 2002 and 2003, MAEMI and RUSA, caused 33% and 22% of total sediment yields at the Doam watershed, respectively. Thus, it is recommended that the SWAT model, capable of simulating snow melt, sediment yield from a single storm event, and long-term weather data, needs to be used in estimating soil erosion at alpine agricultural areas to develop successful soil erosion management instead of the USLE.

Analysis of Sediment Yields at Watershed Scale using Area/Slope-Based Sediment Delivery Ratio in SATEEC (SATEEC 시스템을 이용한 면적/경사도에 의한 유달률 산정 방법에 따른 유사량 분석)

  • Park, Younshik;Kim, Jonggun;Kim, Narnwon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.650-658
    • /
    • 2007
  • The Universal Soil Loss Equation (USLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the USLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to compute the sediment yield at any point in watershed. In this study, the SATEEC was applied to the Sudong watershed, Chuncheon Gangwon to compare the sediment yield using area-based sediment delivery ratio (SDRA) and slope-based sediment delivery ratio (SDRS) at watershed outlet. The sediment yield using the SDRA by Vanoni, SYA and the sediment yield using the SDRS by Willams and Berndt, SYS were compared for the same sized watersheds. The 19 subwatersheds was 2.19 ha in size, the soil loss and sediment yield were estimated for each subwatershed. Average slope of main stream was about 0.86~3.17%. Soil loss and sediment yield using SDRA and SDRS were distinguished depending on topography, especially in steep and flat areas. The SDRA for all subwatersheds was 0.762, however the SDRS were estimated in the range of 0.553~0.999. The difference between SYA and SYS was -79.74~27.45%. Thus site specific slope-based SDR is more effective in sediment yield estimation than area-based SDR. However it is recommended that watershed characteristic need to be considered in estimating yield behaviors.

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

Numerical analysis on erosion process of replenished sediment on rock bed

  • Takebayashi, Hiroshi;Yoshiiku, Musashi;Shiuchi, Makoto;Yamashita, Masahiro;Nakata, Yasusuke
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.17-17
    • /
    • 2011
  • As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. However, most of them can treat movable bed only and cannot be applied to the bed deformation process of sediment on rocks. If the friction angle between the sediment and the bed surface is assumed to be the same as the friction angle between the sediment and the sediment, sediment transport rate must be smaller without sediment deposition layer on the rocks. As a result, the reproduced bed geometry is affected very well. In this study, non-equilibrium transport process of non-cohesive sediment on rigid bed is introduced into the horizontal two dimensional bed deformation model and the model is applied to the erosion process of replenished sediment on rock in the Nakagawa, Japan. Here, the Japanese largest scale sediment augmentation has been performed in the Nakagawa. The results show that the amounts of the eroded sediment and the remained sediment reproduced by the developed numerical model are $56300m^3$ and $26800m^3$, respectively. On the other hand, the amounts of the eroded sediment and the remained sediment measured in the field after the floods are $56600m^3$ and $26500m^3$, respectively. The difference between the model and field data is very small. Furthermore, the bed geometry of the replenished sediment after the floods reproduced by the developed model has a good agreement with the measured bed geometry after the floods. These results indicate that the developed model is able to simulate the erosion process of replenished sediment on rocks very well. Furthermore, the erosion speed of the replenished sediment during the decreasing process of the water discharge is faster than that during the increasing process of the water discharge. The replenished sediment is eroded well, when the top of the replenished sediment is covered by the water. In general, water surface level is kept to be high during the decreasing process of the discharge during floods, because water surface level at the downstream end is high. Hence, it is considered that the high water surface level during the decreasing process of the water discharge affects on the fast erosion of the replenished sediment.

  • PDF

Sedimentation in the lake catchments in South Korea

  • Orkhonselenge, A.;matsuoka, T.;Tanaka, Y.;Kashiwaya, K.;Kim, S.
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • This study discusses the soil erosion on hillslopes and sediment deposition in lakes within catchments in South Korea. In order to determine seasonal variations of sedimentation in Yeongcheon and Seondong lakes, the sediment traps were set in the deep part of both lakes and lake sediments have been sampledmonthly from July 2004 to August 2005. Some properties such as highmineral content, fine particle size and high particle density in the Yeongcheon Lake indicate intensive soil erosion, sediment transportation and deposition throughout the catchment for a long time. The high sediment yield in the Seondong Lake is related with higher weathering intensity and extreme soil erosion by running water due to higher seasonal rainfall amount. Rates of erosion and sedimentation in the Seondong Lake are estimated to be higher than those of the Yeongcheon Lake, suggesting that the Seondong Lake is associated with higher precipitation, smaller catchment area, and extreme soil vulnerability to ephemeral erosion by overland flow during the heavy rainfall event. Consequently, both catchments are characterized by different erosion and sedimentation processes, as well as different geomorphic factors (bedrock, soil structure, rainfall intensity and catchment area).

  • PDF

GRID-BASED SOIL-WATER EROSION AND DEPOSITION MODELING USING GIS AND RS

  • Kim, Seong-Joon
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.49-61
    • /
    • 2001
  • A grid-based KIneMatic wave soil-water EROsion and deposition Model(KIMEROM) that predicts temporal variation and spatial distribution of sediment transport in a watershed was developed. This model uses ASCII-formatted map data supported from the regular gridded map of GRASS (U.S. Army CERL, 1993)-GIS(Geographic Information Systems), and generates the distributed results by ASCII-formatted map data. For hydrologic process, the kinematic wave equation and Darcy equation were used to simulated surface and subsurface flow, respectively (Kim, 1998; Kim et al., 1998). For soil erosion process, the physically-based soil erosion concept by Rose and Hairsine (1988) was used to simulate soil-water erosion and deposition. The model adopts single overland flowpath algorithm and simulates surface and subsurface water depth, and sediment concentration at each grid element for a given time increment. The model was tested to a 162.3 $\textrm{km}^2$ watershed located in the tideland reclaimed ares of South Korea. After the hydrologic calibration for two storm events in 1999, the results of sediment transport were presented for the same storm events. The results of temporal variation and spatial distribution of overland flow and sediment areas are shown using GRASS.

  • PDF

Application of Sediment Transport Model Using Observed Erosion Rates (침식률 측정결과를 사용하는 유사이동모형의 적용)

  • Jung, Tae-Sung;Craig, Jones;Lick, Wilbert
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1033-1041
    • /
    • 2004
  • A 2-dimensional numerical sediment transport model using erosion rates in undisturbed conditions has been developed and applied to calculating the suspended sediment concentrations and bed level changes in the Lower Fox River The model reduces inaccuracy of sediment model by using the accurate erosion rates obtained in a flume (called Sedflume). The flume has been developed to measure erosion rates as a function of sediment depth and at the situation of high shear stresses such as flood event. Both mechanisms of suspended load and bedload transport are included in the model. The model results were verified for the description of sediment transport in a straight channel and the sediment transport during flood event in the Lower Fox River The results of Lower Fox River simulation showed good agreements with the observed SS concentrations. This model can be used to simulate sediment transport under the high shear conditions such as flood.

Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India

  • Rai, Anant Kr.;Kumar, Arun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2017
  • Sediment flow through hydropower components causes hydro-abrasive erosion resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance. Online instruments are required to measure/capture the variations in sediment parameters along with collecting samples manually to analyse in laboratory for verification. In this paper, various sediment parameters viz. size, concentration (TSS), shape and mineral composition relevant to hydro-abrasive erosion were measured and discussed with respect to a hydropower plant in Himalayan region, India. A multi-frequency acoustic instrument was installed at a desilting chamber to continuously monitor particle size distribution (PSD) and TSS entering the turbine during 27 May to 6 August 2015. The sediment parameters viz. TSS, size distribution, mineral composition and shape entering the turbine were also measured and analysed, using manual samples collected twice daily from hydropower plant, in laboratory with instruments based on laser diffraction, dynamic digital image processing, gravimetric method, conductivity, scanning electron microscope, X-ray diffraction and turbidity. The acoustic instrument was able to capture the variation in TSS; however, significant deviations were found between measured mean sediment sizes compared to values found in the laboratory. A good relation was found for turbidity ($R^2=0.86$) and laser diffraction ($R^2=0.93$) with TSS, which indicated that turbidimeter and laser diffraction instrument can be used for continuous monitoring of TSS at the plant. Total sediment load passed through penstock during study period was estimated to be 15,500 ton. This study shall be useful for researchers and hydropower managers in measuring/monitoring sediment for hydro-abrasive erosion study in hydropower plants.

Development of Two-Dimensional Sediment Transport Model Using Observed Erosion Rate (침식률 측정자료를 이용한 2차원 퇴적물 수송모형의 개발)

  • Jeong, Tae-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.687-699
    • /
    • 2001
  • A 2-dimensional numerical sediment transport model has been developed by using erosion rates observed by SEDFLUME. The model un boundary-fitted coordinate can reduce inaccuracy of sediment model with accurate erosion data. Suspended transport and bed load transport are included in the model together. The model results gave good agreement with particle size distributions in 1-d channel and was more accurate than that of HIDAS of 1-dimensional model. The model applied to an enlarging channel to check model performance in 2-dimensional domain. Bed coarsening reduced erosion and deposition.

  • PDF

Analysis of the Effects on Soil Erosion and Suspended Sediment Reduction by Alpine Unauthorized and Illegal Agricultural Fields Restoration Scenarios (고랭지 임의·불법 경작지 복구 시나리오에 따른 토양유실 및 부유사량 저감 효과 분석)

  • Lee, Seoro;Lee, Gwanjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • This study assessed the efficiency of reducing soil erosion and suspended sediment through the restoration of alpine unauthorized and illegally cultivated fields, using the SWAT (Soil and Water Assessment Tool) model in the Mandae District. The results showed that in Scenario 5, which involved restoring unauthorized and illegal fields within forests, along rivers (banks), and in ditch areas were restored to their original land categories, achieved the highest efficiency in reducing average annual soil erosion and suspended sediment, with reductions of 8.1% and 4.5%, respectively. In particular, it was confirmed that the restoration of unauthorized and illegal fields within forested areas has a significant impact. This demonstrated that the restoration of unauthorized and illegal agricultural fields can substantially reduce the soil erosion and suspended sediment attributable to non-point source pollution. Our findings highlight the importance of managing these unauthorized and illegal agricultural activities in developing sustainable strategies within non-point source pollution management areas. This study is expected to provide important basic data to effectively establish water quality improvement strategies in the region of non-point source pollution management.