• Title/Summary/Keyword: section capacity

Search Result 1,069, Processing Time 0.027 seconds

Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs

  • Qiao, Wentao;Huang, Zhiyuan;Yan, Xiaoshuo;Wang, Dong;Meng, Lijun
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • The aim of this paper is to study the mechanical behaviors of the cold-formed thin-walled steel and reinforced concrete sandwich composite slab (CTS&RC-SCS) under vertical loads and to develop the calculation methods of its flexural bearing capacity and section stiffness. Two CTS&RC-SCS specimens were designed and manufactured to carry out the static loading test, and meanwhile, the numerical simulation analyses based on finite element method were implemented. The comparison between experimental results and numerical analysis results shows that the CTS&RC-SCS has good flexural capacity and ductility, and the accuracy and rationality of the numerical simulation analysis are verified. Further, the variable parameter analysis results indicate that neither increasing the concrete strength grade nor increasing the thickness of C-sections can significantly improve the flexural capacity of CTS&RC-SCS. With the increase of the ratio of longitudinal bars and the thickness of the composite slab, the flexural capacity of CTS&RC-SCS will be significantly increased. On the basis of experimental research and numerical analysis above, the calculation formula of the flexural capacity of CTS&RC-SCS was deduced according to the plastic section design theory, and section stiffness calculation formula was proposed according to the theory of transformed section. In terms of the ultimate flexural capacity and mid-span deflection, the calculated values based on the formulas and the experimental values are in good agreement.

A Study on the Road Capacity Reduction Rate of Freeway Tunnel Section (고속도로 터널부 도로 용량 감소율에 관한 연구)

  • Sunhoon Kim;Dongmin Lee;Sooncheon Hwang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.3
    • /
    • pp.17-28
    • /
    • 2024
  • In this study, the capacity of the tunnel and the general section was calculated and compared using the VDS detector data, and the decrease rate in capacity of the tunnel section was analyzed by tunnel type. To compare the capacity of the tunnel and the general section, the Product Limit Method (PLM) was applied to the VDS detector data. As a result of comparing the capacity of the tunnel and general section, the capacity of the tunnel section decreased by about 6.5% compared to the general section. To classify the tunnel type, the tunnel extension and the number of lanes were used as variables, and there was a difference in the decrease rate of capacity by tunnel group classified by each criterion.

Flexural Capacity Evaluation of High-strength New-shape Composite Pile (S-Pile) for the Soldier Pile in the C.I.P Method (주열식공법 엄지말뚝을 위한 고강도 신형상 합성파일 (S-Pile)의 휨성능 평가)

  • Lee, Kyung-koo;Kim, Dae-Hee;Joo, Eun-Hee;Kim, Young-Gi;Kim, Bong-Chan;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.185-186
    • /
    • 2021
  • In Korea, many buildings are built with underground spaces and cast-in-place pile method is mostly applied in the temporary retaining walls for the underground space construction. A H-shaped steel section is generally embedded in the soldier pile in the C.I.P method. In this study, a new and economical section with high strength steel replacing the H-shaped section was proposed and its flexural capacity was evaluated experimentally. The new section is the concrete-filled composite section with pentagonal thin plate and thick flange plate. Test results showed that the proposed section has an excellent flexural strength and ductility.

  • PDF

A Study on the Section Design of FRP-Concrete Composite Slabs Considering Failure Behaviors (파괴 거동을 고려한 FRP-콘크리트 합성 바닥판의 단면 설계에 관한 연구)

  • 조근희;김병석;이영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.641-646
    • /
    • 2002
  • FRP-concrete composite slab is consisted of brittle materials and then shows brittle failure mechanism. This study suggests a new design approach that FRP-concrete composite slab leads to ductile failure, and investigates their failure behaviors for two types of section by numerical analysis. Box-type section is higher than I-type section in load capacity to required FRP quantity. Each section was designed so that the strain of FRP plate is 50% to its ultimate strain on initiation of concrete crushing, and it is verified that displacement ductility is more than two. Ductility capacity can be improved by reducing the strain of FRP on initiation of concrete crushing, but as the strain of FRP is reduced load capacity to required FRP quantity is also reduced. Therefore section optimization study is needed considering safety and economical efficiency.

  • PDF

Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load

  • Shadravan, Shideh;Ramseyer, Chris C.;Floyd, Royce W.
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.251-272
    • /
    • 2019
  • This study performed lateral load testing on seventeen wood wall frames in two sections. Section one included eight tests studying structural foam sheathing of shear walls subjected to monotonic loads following the ASTM E564 test method. In this section, the wood frame was sheathed with four different types of structural foam sheathing on one side and gypsum wallboard (GWB) on the opposite side of the wall frame, with Simpson HDQ8 hold down anchors at the terminal studs. Section two included nine tests studying wall constructed with oriented strand board (OSB) only on one side of the wall frame subjected to gradually applied monotonic loads. Three of the OSB walls were tied to the baseplate with Simpson LSTA 9 tie on each stud. From the test results for Section one; the monotonic tests showed an 11 to 27 percent reduction in capacity from the published design values and for Section two; doubling baseplates, reducing anchor bolt spacing, using bearing plate washers and LSTA 9 ties effectively improved the OSB wall capacity. In comparison of sections one and two, it is expected the walls with structural foam sheathing without hold downs and GWB have a lower wall capacity as hold down and GWB improved the capacity.

A Study on the Load Carrying Capacity of the RC-T Bridge considering depth of crack (RC-T 교량의 균열을 고려한 내하력평가 연구)

  • Shim, Jae-Soo;Kim, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • Recently, many existing bridges has been evaluated for maintenance and protection of collapse. In this study, field measurement according to truck loads tests on the reinforce concrete T beam bridge was carried out. Comparing the results of load test and structural analysis using the moments of inertia of gross section, crack section and effective section, and the moments of inertia of section considering depth of crack, it is conclude that the evaluation of load carrying capacity using the stress modification factor from structural analysis using the moments of inertia of gross section is more rational than using the other moments of inertia of sections.

  • PDF

The Effect of Longitudinal Stiffeners on Load Carrying Capacity in Steel Pipe-Section Piers (원형강교각에서 수직보강재가 내하력에 미치는 영향)

  • Chang, Kyong Ho;Jang, Gab Chul;Lee, Chan Ho;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.653-660
    • /
    • 2004
  • To increase the efficiency of the urban areas, pipe section steel piers, which have relatively small sections, must be constructed. Since smaller sections mean decreased load capacity, longitudinal stiffeners were applied to the pipe section steel piers to increase their load capacity. Increased load capacity through longitudinal stiffeners, however, could not yet be confirmed. Therefore, the effect of longitudinal stiffeners on the load capacity of pipe section steel piers still needs to be studied. In this paper, the effect of the number of longitudinal stiffeners on the load capacity of steel piers was determined by carrying out elastic plastic FE analysis on material and geometric non-linearity. In addition, comparative analyses of the parameters of the width, the thickness of longitudinal stiffeners, and the slenderness ratio of steel piers were carried out to determine the effects of longitudinal stiffeners.

Modeling and prediction of buckling behavior of compression members with variability in material and/or section properties

  • Gadalla, M.A.;Abdalla, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.631-645
    • /
    • 2006
  • Buckling capacity of compression members may change due to inadvertent changes in the member section dimensions or material properties. This may be the result of repair, modification of section properties or degradation of the material properties. In some occasions, enhancement of buckling capacity of compression members may be achieved through splicing of plates or utilization of composite materials. It is very important for a designer to predict the buckling resistance of the compression member and the important parameters that affect its buckling strength once changes in section and/or material properties took place. This paper presents an analytical approach for determining the buckling capacity of a compression member whose geometric and/or material properties has been altered resulting in a multi-step non-uniform section. This analytical solution accommodates the changes and modifications to the material and/or section properties of the compression member due to the factors mentioned. The analytical solution provides adequate information and a methodology that is useful during the design stage as well as the repair stage of compression members. Three case studies are presented to show that the proposed analytical solution is an efficient method for predicting the buckling strength of compression members that their section and/or material properties have been altered due to splicing, coping, notching, ducting and corrosion.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Partial sectional confinement in a quasi-encased steel-concrete composite beam

  • Hassanzadeh, Amir Masoud;Dehestani, Mehdi
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • In the recent decades, the application of composite materials, due to their desirable properties, has increased dramatically. In the present study, a quasi-encased trapezoidal section composite steel beam encased with concrete is thoroughly examined. Calculation of the load bearing capacity is carried out by finite element modeling of concrete and FRP beams with trapezoidal section under the effect of controlled displacement loading. The results are then validated comparing to the existing experimental results obtained from similar studies. Further on, the materials are changed to steel and concrete, and the section is de-signed in such a way that both concrete and steel reach a high percent-age of their load bearing capacity. In the last step, the parameters affecting the bending capacity and the behavior of the semi-confined composite beam are investigated. Results revealed that the beam diagonal web thickness plays the most effective role in load bearing capacity amongst other studied parameters. Furthermore, by analyzing the results on the effect of different parameters, an optimal model for primary beam section is presented, which exhibits a greater load bearing capacity compared to the initial design with the same amount of materials used for both sections.