• Title/Summary/Keyword: secretion proteins

Search Result 263, Processing Time 0.02 seconds

Purinergic Receptors Play Roles in Secretion of Rat von Ebner Salivary Gland

  • Kim, Sang-Hee;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.141-148
    • /
    • 2006
  • The effects of adenosine triphosphate(ATP) on salivary glands have been recognized since 1982. The presence of purinergic recepetors(P2Rs) that mediate the effects of ATP in various tissues, including parotid and submandibular salivary gland, has been supported by the cloning of receptor cDNAs and the expression of the receptor proteins. P2Rs have many subtypes, and the activation of these receptor subtypes increase intracellular $Ca^{2+}$, a key ion in the regulation of the secretion in the salivary gland. The apical pores of taste buds in circumvallate and foliate papillae are surrounded by the saliva from von Ebner salivary gland(vEG). Thus, it is important how the secretion of vEG is controlled. This study was designed to elucidate the roles of P2Rs on salivary secretion of vEG. Male Sprague-Dawley rats (about 200 g) were used for this experiment. vEG-rich tissues were obtained from dissecting $500-1,000\;{\mu}m$ thick posterior tongue slices under stereomicroscope view. P2Rs mRNA in vEG acinar cells were identified with RT-PCR. To observe the change in intracellular $Ca^{2+}$ activity, we employed $Ca^{2+}-ion$ specific fluorescence analysis with fura-2. Single acinar cells and cell clusters were isolated by a sequential trypsin/collagenase treatment and were loaded with $10\;{\mu}M$ fura -2 AM for 60 minutes at room temperature. Several agonists and antagonists were used to test a receptor specificity. RT-PCR revealed that the mRNAs of $P2X_4$, $P2Y_1$, $P2Y_2$ and $P2Y_3$ are expressed in vEG acinar cells. The intracellular calcium activity was increased in response to $10\;{\mu}M$ ATP, a P2Rs agonist, and 2-MeSATP, a $P2Y_1$ and $P2Y_2R$ agonist. However, $300\;{\mu}M\;{\alpha}{\beta}-MeATP$, a $P2X_1$ and $P2X_3R$ agonist, did not elicit the response. The responses elicited by $10\;{\mu}M$ ATP and UTP, a $P2Y_2R$ agonists, were maintained when extracellular calcium was removed. $10\;{\mu}M$ suramin, a P2XR antagonist, and reactive blue 2, a P2YR antagonist, partially blocked ATP-induced response. However, when extracellular calciums were removed, suramin did not abolish the responses elicited by ATP. These results suggest that P2Rs play an important role in salivary secretion of vEG acinar cells and the effects of ATP on vEG salivary secretion may be mediated by $P2X_4$, $P2Y_1$, $P2Y_2$, and/or $P2Y_3$.

Lumination of Epididymis and Electrophoretic Pattern of Proteins in Epididymal Fluid during Sexual Maruradon in Mouse (성적 성숙에 따른 생쥐 부정소의 강소형성과 부정소액내 단백질의 전기영동 양상)

  • 김문규;윤현수;최규완;윤용달
    • The Korean Journal of Zoology
    • /
    • v.32 no.3
    • /
    • pp.264-274
    • /
    • 1989
  • In order to study the influence of spermatozoa and testicular fluid on the component and composition of proteins in epididymal fluid of mice, histological differentiation of testis and epididymis were observed during sexual maturation, and the proteins in epididymal fluids collected according to the characteristics of lumination were analyzed by electrophoresis (SDS-PAGE). In 10 day-old mouse, both of,testis and epididymis were undifferentiated. In 20 day-old mouse, epididymis was primitively luminated, but testis was not. In 35 day-old mouse, both of testis and epididymis were luminated and eaithdymal epithelium was differentiated into principal cells and clear cells. Spermatozoa were not transfered into epididymis yet. However, in 80 day-old mouse, both of festis and epididymis were fully differentiated and spermatozoa were transfered into epididymis. In electrophoretic paftem of proteins in epididymal fluid, a total of 28 kinds of proteins were identified, which were different from those of their sera. 12 kinds out of these proteins were epididymal specific protein(ESP) detected in epididymal fluid only, and the other 16 kinds(TEP) were also detected in testicular fluid. The proteins in epididymal fluid changed during sexual maturation and 3 kinds of the proteins changed quantitatively according to epididymal regions in adult. It may be concluded from the above results that the component and composition of the proteins in epididymal fluid changed by the influx of testicular fluid including spermatozoa into epididymis and regulation of the protein synthesis, secretion and/or absorption by the epididymal epithelium. Therefore it is strongly suggested that ESP and TEP in epididymal fluid play somehow significant roles on the maturation of epididymal spermatozoa.

  • PDF

A Missense Variant (R239Q) in CCN3 Induces Aberrant Apoptosis in the Developing Mouse Brain

  • Kim, Hyunduk;Yang, Hayoung;Woo, Dong Kyun;Jang, Sung-Wuk;Shim, Sungbo
    • Biomedical Science Letters
    • /
    • v.24 no.2
    • /
    • pp.64-75
    • /
    • 2018
  • CCN3 (also known as NOV, Nephroblastoma overexpressed) proteins are involved in various pathologies during different developmental stages. We have previously shown that intracellular levels and normal extracellular secretion of CCN3 are important for neuronal differentiation. Furthermore, we demonstrated that a single amino acid in the CCN3 TSP-1 domain is important for extracellular secretion and that palmitoylation of CCN3 is required in this process. However, the effect of abnormal CCN3 accumulation on cells remains to be studied. Here, we found mutations in the TSP-1 domain of CCN3 that led to intracellular accumulation and abnormal aggregation of CCN3. It was observed that this mutation resulted in a phenomenon similar to neurodegeneration when overexpressed in the developing mouse cortex. This mutation also confirmed the activation of apoptotic gene expression in Neuro2a cells. In addition, we confirmed the in vivo transcriptional changes induced by this mutation using microarray analysis. We observed a significant increase in the expression of Anp32a, an apoptosis-related gene. Collectively, these results indicate that a single mutation in CCN3 can lead to abnormal cell death if it shows intracellular accumulation and abnormal aggregation.

Identification of a Functionally Relevant Signal Peptide of Mouse Ficolin A

  • Kwon, Sang-Hoon;Kim, Min-Soo;Kim, Dong-Bum;Lee, Keun-Wook;Choi, Soo-Young;Park, Jin-Seu;Kim, Yeon-Hyang;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.532-538
    • /
    • 2007
  • Mouse ficolin A is a plasma protein with lectin activity, and plays a role in host defense by binding carbohydrates, especially GlcNAc, on microorganisms. The ficolin A subunit consists of an N-terminal signal peptide, a collagen-like domain, and a C-terminal fibrinogen-like domain. In this study, we show that ficolin A can be synthesized and oligomerized in a cell and secreted into culture medium. We also identify a functionally relevant signal peptide of ficolin A by using MS/MS analysis to determine the N-terminal sequence of secreted ficolin A. When the signal peptide of mouse ficolin A was fused with enhanced green fluorescent protein (EGFP), EGFP was released into HEK 293 cell medium, suggesting that the signal peptide can efficiently direct ficolin A secretion. Moreover, our results suggest that the signal peptide of ficolin A has potential application for the production of useful secretory proteins.

The Regulation of Insulin-Like Growth (IGF) Factors and IGF Binding Proteins by High Glucose in Mesangial Cells

  • Park Soo-hyun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • It has been reported that glomerulosclerosis mediated by the dysfunction of mesangial cells and insulin-like growth factors (IGFs) are associated with the development of diabetic nephropathy. However, it is not yet known the effect of high glucose on IGF-I, -II secretion, IGF-I receptor, and IGFBPs expression in the mesangial cells. Thus, this study was conducted to examine the effect of high glucose on IGF system and its involvement of protein kinase C (PKC) and oxidative stress in mesangial cells. In this study, high glucose (25 mM) increased IGF-I and IGF-II secretion and mRNA expression (P<0.05), which was blocked by PKC inhibitor (staurosporine, 10/sup -8/ M) and antioxidant (N-acetyl cystein, 10/sup -5/ M). High glucose decreased IGFBP-1 and -2 expression but increased IGFBP-5 expression. These alteration of IGFBPs by high glucose was also prevented by staurosporine and NAC, suggesting the role of PKC and oxidative stress. Indeed, high glucose increased PKC activity. Furthermore, high glucose-induced increase of lipid peroxide (LPO) formation was blocked by PKC inhibitors. In conclusion, high glucose alters IGF system via PKC-oxidative pathways in mesangial cells.

  • PDF

The effect of Injinchunggan-tang(Yinchenqinggan-tang) on Inflammatory Cytokine Gene Expression in Kupffer Cells (인진청간탕(茵蔯淸肝湯)이 kupffer cell 의 inflammatory cytokine 발현에 미치는 영향)

  • Kim Ji-Kwon;Kim Young-Chul;Lee Jang-Hoon;Woo Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.46-58
    • /
    • 2004
  • Objectives : This study was designed to investigate the effects of Injinchunggan-tang(Yinchenqinggan-tang) on the expression of inflammatory cytokine genes and proteins in kupffer cells. Materials and Methods : The mRNA expression level and protein secretion level were measured using quantitative RT-PCR and ELISA assay respectively in Injinchunggan-tang-treated and untreated kupffer cells after exposed to ethanol, acetaldehyde and lipopolysaccharide. Results : Injinchunggan-tang(Yinchenqinggan-tang) reduced mRNA expression level and protein secretion level of $TNF-{\alpha},\;TGF-{\beta}1,\;IL-1{\beta},\;IL-6,\;IL-8$ that are induced by ethanol, acetaldehyde and lipopolysaccharide in kupffer cells and that mediate inflammation and fibrosis of liver. Conclusion : The result indicates that Injinchunggan-tang (Yinchenqinggan-tang) blocks alcohol-induced liver injury and protects liver by reducing production of inflammatory cytokines.

  • PDF

Crystal Structure of PAS factor from Vibrio vulnificus

  • Lee, Jun-Hyuck;Park, Seong-Hwan;Im, Young-Jun;Kim, Mun-Kyoung;Kang, Gil-Bu;Kim, Young-Ran;Rhee, Joon-Haeng;Eom, Soo-Hyun
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.72-72
    • /
    • 2003
  • The PAS factor, whose gene has been cloned from V vulnifcus, is a protein secretion factor. Although the role of the PAS factor in Vibrio is still unknown, it may be involved with the bacterial protein secretion. The PAS factor is a 76 amino acid polypeptide, and its expression in E. coli cells makes the host cell membrane leaky, resulting in the excretion of periplasmic proteins into the culture medium. Highly expressed PAS factor is harmful to the cell, this may be due to a disruption of the membrane structure or function.

  • PDF

Effect of Glycine Supplement on Extracellular Secretion of Levansucrase form Pseudomonas aurantiaca S-4380 in Recombinant Escherichia coli (Glycine 첨가에 의한 Pseudomonas aurantiaca S-4380 유래 재조합 levansucrase 효소의 세포 외 분비촉진 효과)

  • 김승환;장은경;김인환;장기효;강순아;장병일
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.312-317
    • /
    • 2003
  • The addition of glycine up to 0.5% (w/v) to Luria broth (LB) media on the secretion of levansucrase in a recombinant strain Escherichia coli JM109/pUPLK1 was observed to enhance the release of periplasmic proteins from the cell to the broth, without significantly affecting the cell growth rate and protein productivity. However, the glycine concentration at 1 % (w/v), the cell density attainable at the stationary phase fell to about 50% and the extracellular activity of levansucrase corresponded to about 80% of the total (extracellular plus intracellular) activity and increased by 2.6-fold, comparing to the cells grown in the absence of glycine. The increased pH at stationary phase accelerated the degradation of levansucrase. Maximal extracellular activity was attained when 1 % glycine was supplemented at the onset of strain growth.

Baicalin suppresses lipopolysaccharide-induced matrix metalloproteinase expression: action via the mitogen-activated protein kinase and nuclear factor κB-related protein signaling pathway

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • Periodontal disease is an inflammatory disease that affects the destruction of the bone supporting the tooth and connective tissues surrounding it. Periodontal ligament fibroblasts (PDLFs) induce overexpression of matrix metalloproteinase (MMP) involved in periodontal disease's inflammatory destruction. Osteoclasts take part in physiological bone remodeling, but they are also involved in bone destruction in many kinds of bone diseases, including osteoporosis and periodontal disease. This study examined the effect of baicalin on proteolytic enzymes' production and secretion of inflammatory cytokines in PDLFs and RAW 264.7 cells under the lipopolysaccharide (LPS)-induced inflammatory conditions. Baicalin inhibited the expression of the protein, MMP-1 and MMP-2, without affecting PDLFs' cell viability, suggesting its possibility because of the inhibition of phosphorylation activation of mitogen-activated protein kinase's p38, and the signal transduction process of nuclear factor κB (NFκB)-related protein. Also, baicalin reduced the expression of MMP-8 and MMP-9 in RAW 264.7 cells. This reduction is thought to be due to the inhibition of the signal transduction process of NFκB-related proteins affected by inhibiting p65RelA phosphorylation. Also, baicalin inhibited the secretion of nitric oxide and interleukin-6 induced by LPS in RAW 264.7 cells. These results suggest that baicalin inhibits connective tissue destruction in periodontal disease. The inhibition of periodontal tissue destruction may be a therapeutic strategy for treating inflammatory periodontal-diseased patients.

Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features

  • Mallick, Tista;Mishra, Rukmini;Mohanty, Sasmita;Joshi, Raj Kumar
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.102-114
    • /
    • 2022
  • Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.