• Title/Summary/Keyword: secretion proteins

Search Result 267, Processing Time 0.026 seconds

Construction of Novel Plasmid Vector for DNA Immunization

  • Park, Yeong-Seop;Park, Jae-Yeong;Jeong, Dong-Geon;Choe, Cha-Yong;Ju, Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.543-547
    • /
    • 2002
  • DNA vaccines use eukaryote expression vectors to produce immunizing proteins in the vaccinated host and it represents a novel approach to vaccine and immuno-therapeutic development. We constructed a 2.9 kb compact plasmid vector (pVAC) which contains CMV promoter, polycloning site, BGH poly A terminator, ampicillin resistance gene and PBR322 origin. Enriched unmathlyated CpG motifs have introduced into pVAC-ISS1 and pVAC-ISS2 which are derived from pVAC for enhancing Thl responses. These plasmid DNAs rapidly induced interleukin 6 secretion in vivo. It is expected that these vectors will contribute to the DNA inoculation against infectious disease and various cancers without adjuvant.

  • PDF

The Study on the Effective Expression Strategy for Recombinant Protein Production with Pichia pastoris and Hansenula polymorpha (Hansenula polymorpha와 Pichia pastoris의 비교를 통한 회분식 배양에서의 효과적인 재조합단백질 발현방법에 관한 연구)

  • Gang, Hwan-Gu;Kim, Jae-Ho;Jeon, Hui-Jin
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.482-489
    • /
    • 1999
  • As host for the production of eucaryotic heterologous proteins, methylotrophic yeast Pichia pastoris and Hansenula polymorpha are the most highly developed of a small group of alternative yeast species chosen for their perceived advantages. This paper describes the method to enhance the recombinant protein productivity with P. pastoris and H. Plymorpha. In these experiments, the effects of methanol induction timing, induction method, pH, culture temperature and kinds of nitrogen sources on foreign protein production were tested with P. pastoris and compared with H. polymorpha.. In addition, optimum methanol concentration as inducer and the effects of carbon sources on AOX1 or MOX promoter repression and secretion efficiency were also studied in both cases.

  • PDF

Single and Dual Ligand Effects on Gene Expression Changes in Mouse Macrophage Cells

  • Choi Sang-Dun;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2006
  • We identified differentially expressed genes in RAW264.7 cells in response to single and double ligand treatments (LPS, $IFN{\gamma}$, 2MA, LPS plus $IFN{\gamma}$, and LPS plus 2MA). The majority of the regulated transcripts responded additively to dual ligand treatment. However, a significant fraction responded in a non-additive fashion. Several cytokines showing non-additive transcriptional responses to dual ligand treatment also showed non-additive protein production/secretion responses in separately performed experiments. Many of the genes with non-additive responses to LPS plus 2MA showed enhanced responses and encoded pro-inflammatory proteins. LPS plus $IFN{\gamma}$ appeared to induce both non-additive enhancement and non-additive attenuation of gene expression. The affected genes were associated with a variety of biological functions. These experiments reveal both dependent and independent regulatory pathways and point out the specific nature of the regulatory interactions.

Melatonin-induced Calbindin-D9k is Involved in Protecting Cells against Conditions That Cause Cell Death

  • Yoo, Yeong-Min;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.24 no.4
    • /
    • pp.237-247
    • /
    • 2009
  • Melatonin (N-acetyl-5-methoxytryptamine) is the major neurohormone secreted during the night by the vertebrate pineal gland. The circadian pattern of pineal melatonin secretion is related to the biological clock within the suprachiasmatic nucleus (SCN) of the hypothalamus in mammals. The SCN coordinates the body's rhythms to the environmental light-dark cycle in response to light perceived by the retina, which acts mainly on retinal ganglion cells that contain the photopigment melanopsin. Calbindin-D9k (CaBP-9k) is a member of the S100 family of intracellular calcium- binding proteins, and in this review, we discuss the involvement of melatonin and CaBP-9k with respect to calcium homeostasis and apoptotic cell death. In future studies, we hope to provide important information on the roles played by CaBP-9k in cell signal transduction, cell proliferation, and $Ca^{2+}$ homeostasis in vivo and in vitro.

ADAM7 Is Associated with Epididymosomes and Integrated into Sperm Plasma Membrane

  • Oh, Jeong Su;Han, Cecil;Cho, Chunghee
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.441-446
    • /
    • 2009
  • During epididymal transit, mammalian sperm acquire selected proteins secreted by the epididymis. We previously showed that a disintegrin and metalloprotease (ADAM) 7 is expressed specifically in the epididymis and transferred to the sperm surface during epididymal transit. Here, we show that mouse ADAM7 secreted to the epididymal lumen is associated with membranous vesicles known as epididymosomes. Furthermore, we found that ADAM7 can be transferred directly from epididymal vesicles to sperm and that it is an integral plasma membrane protein in sperm. Thus, our study provides new information regarding the unique mode of secretion and interaction of ADAM7 during the epididymis-to-sperm transfer process.

The Shigella Flexneri Effector OspG Interferes with Innate Immune Responses by Targeting Ubiquitin-Conjugating Enzymes

  • Kim, Dong-Wook
    • Proceedings of the PSK Conference
    • /
    • 2005.11a
    • /
    • pp.231-232
    • /
    • 2005
  • Bacteria of Shigella spp. are responsible for shigellosis in humans, a disease characterized by destruction of the colonic epithelium that is induced by the inflammatory response elicited by invasive bacteria. They use a type III secretion system injecting effector proteins into host cells to induce their entry into epithelial cells and triggers apoptosis in macrophages. We present evidence that the effector OspG is a protein kinase that binds various ubiquitinylated ubiquitin-conjugating enzymes (E2s) and blocks degradation of phospho-$I{\kappa}B{\alpha}$ induced upon entry of bacteria into epithelial cells. Transfection experiments confirmed that OspG interferes with the $NF-{\kappa}B$ activation patway by preventing phospho-$I{\kappa}B{\alpha}$ degradation, suggesting that OspG inactivates a component of the $SCF^{{\beta}-TrCP}$ ubiquitin ligase complex (E3) involved in phospho-$I{\kappa}B{\alpha}$ ubiquitination. Upon infection of ileal loops in rabbits, the ospG mutant induced a stronger inflammatory response compared with the wild-type strain, indicating that OspG down-regulates the host innate response induced by invasive bacteria.

  • PDF

Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells

  • Kita, Shunbun;Shimomura, Iichiro
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.771-780
    • /
    • 2022
  • The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.

Immunopathogenesis of childhood idiopathic nephrotic syndrome

  • Hae Il Cheong
    • Childhood Kidney Diseases
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Pediatric nephrotic syndrome (NS) is a clinical syndrome characterized by massive proteinuria, hypoalbuminemia, and generalized edema. Most childhood NS cases are idiopathic (with an unknown etiology). Traditional therapeutic approaches based on immunosuppressive agents largely support the key role of the immune system in idiopathic NS (INS), especially in the steroid-sensitive form. Although most previous studies have suggested the main role of T cell dysfunction and/or the abnormal secretion of certain glomerular permeability factors, recent studies have emphasized the role of B cells since the therapeutic efficacy of B cell depletion therapy in inducing and/or maintaining prolonged remission in patients with INS was confirmed. Furthermore, several studies have detected circulating autoantibodies that target podocyte proteins in a subset of patients with INS, suggesting an autoimmune-mediated etiology of INS. Accordingly, a new therapeutic modality using B cell-depleting drugs has been attempted, with significant effects in a subset of patients with INS. Currently, INS is considered an immune-mediated disorder caused by a complex interplay between T cells, B cells, soluble factors, and podocytes, which may vary among patients. More in-depth investigations of the pathogenic pathways of INS are required for an effective personalized therapeutic approach and to define precise targets for therapeutic intervention.

Inhibitory Effect of Acute Pancreatitis in Rats by Patrinia Scabiosaefolia (급성췌장염 유발된 흰쥐에 대한 패장의 억제 효과)

  • Lee, Joon-Suk;Jung, Sang-Pil;Kil, Eun-Young;Lee, Su-Kyung;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.15 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • Objectives : Patrinia scabiosaefolia (PS) has long been as a remedy for treating infectious diseases in Korea. In the present experiments, the author examined the effects of PS on the cholecystokinin-octapeptide (CCK)-induced pancreatitis (AP) in rats. Methods : Male Wister rats weighing 200 to 250 g were divided into two group. Normal untreated group, in treatment with PS group; PS was administered orally, followed by $75{\mu}g/kg$ CCK subcutaneously three times, after 1, 3 and 5 h. This whole procedure was repeated for 5 days. In treatment with saline group, the protocol was the same as in treatment group with PS. The author determined the pancreatic weight/body weight ratio, the levels of pancreatic heat shock proteins(HSP)60, HSP72 and the secretion of pro-inflammatory cytokines. Results and Conclusion : PS was significantly decreased the pancreatic weight/body weight ratio in CCK-induced AP. PS increased HSP60 and HSP72 compared with CCK-induced AP. Additionally, the secretion of tumor necrosis factor(TNF)-${\alpha}$, interleukin(IL)-$1{\beta}$ and IL-6 the levels of amylase and lipase were lower than that of saline. These results suggest that PS may has a inhibitory effect against CCK-induced AP.

Multiple transcripts of anoctamin genes expressed in the mouse submandibular salivary gland

  • Han, Ji-Hye;Kim, Hye-Mi;Seo, Deog-Gyu;Lee, Gene;Jeung, Eui-Bae;Yu, Frank H.
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Purpose: Salivary fluid formation is primarily driven by Ca2+-activated, apical efflux of chloride into the lumen of the salivary acinus. The anoctamin1 protein is an anion channel with properties resembling the endogenous calcium-activated chloride channels. In order to better understand the role of anoctamin proteins in salivary exocrine secretion, the expression of the ten members of the anoctamin gene family in the mouse submandibular gland was studied. Methods: Total RNA extracted from mouse submandibular salivary glands was reverse transcribed using primer pairs to amplify the full-length coding regions of each anoctamin gene and was subcloned into plasmid vectors for DNA sequencing. Alternative splice variants were also screened by polymerase chain reaction using primer pairs that amplified six overlapping regions of the complementary DNA of each anoctamin gene, spanning multiple exons. Results: Multiple anoctamin transcripts were found in the mouse submandibular salivary gland, including full-length transcripts of anoctamin1, anoctamin3, anoctamin4, anoctamin5, anoctamin6, anoctamin9, and anoctamin10. Exon-skipping splicing in the N-terminal exons of the anoctamins1, anoctamin5, and anoctamin6 genes resulted in multiple alternative splice variants. No expression of anoctamin2, anoctamin7, or anoctamin8 was found. Conclusions: The predominant anoctamin transcript expressed in the mouse submandibular gland is anoctamin1ac. The chloride channel protein produced by anoctamin1ac is likely responsible for the $Ca^{2+}$-activated chloride efflux, which is the rate-limiting step in salivary exocrine secretion.