Acknowledgement
Supported by : Korea Science and Engineering Foundation, Korea Research Foundation, Gwangju Institute of Science and Technology
References
- Arienti, G., Carlini, E., De Cosmo, A.M., Di Profio, P., and Palmerini, C.A. (1998). Prostasome-like particles in stallion semen. Biol. Reprod. 59, 309-313 https://doi.org/10.1095/biolreprod59.2.309
- Aumuller, G., Renneberg, H., Schiemann, P.J., Wilhelm, B., Seitz, J., Konrad, L., and Wennemuth, G. (1997). The role of apocrine released proteins in the post-testicular regulation of human sperm function. Adv. Exp. Med. Biol. 424, 193-219
- Aumuller, G., Wilhelm, B., and Seitz, J. (1999). Apocrine secretion--fact or artifact? Ann. Anat. 181, 437-446 https://doi.org/10.1016/S0940-9602(99)80020-X
- Brown, D.A., and London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221-17224 https://doi.org/10.1074/jbc.R000005200
- Cho, C., Bunch, D.O., Faure, J.E., Goulding, E.H., Eddy, E.M., Primakoff, P., and Myles, D.G. (1998). Fertilization defects in sperm from mice lacking fertilin beta. Science 281, 1857-1859 https://doi.org/10.1126/science.281.5384.1857
- Cho, C. (2005). Mammalian ADAMs with testis-specific or -predominant expression. In The ADAM Family of Proteases, Vol. 4 in the Proteases in Biology and Disease series, N.M. Hoopers, and U. Lendekel, eds., (Netherlands: Springer), pp. 239-259
- Cho, C. (2005). Mammalian ADAMs with testis-specific or -predominant expression. In The ADAM Family of Proteases, Vol. 4 in the Proteases in Biology and Disease series, N.M. Hoopers, and U. Lendekel, eds., (Netherlands: Springer), pp. 239-259
- Cooper, T.G. (1998). Interactions between epididymal secretions and spermatozoa. J. Reprod. Fertil. Suppl. 53, 119-136
- Cornwall, G.A., and Hsia, N. (1997). ADAM7, a member of the ADAM (a disintegrin and metalloprotease) gene family is specifically expressed in the mouse anterior pituitary and epididymis. Endocrinology 138, 4262-4272 https://doi.org/10.1210/en.138.10.4262
- Edidin, M. (2003). The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257-283 https://doi.org/10.1146/annurev.biophys.32.110601.142439
- Edwards, D.R., Handsley, M.M., and Pennington, C.J. (2008). The ADAM metalloproteinases. Mol. Aspects Med. 29, 258-289 https://doi.org/10.1016/j.mam.2008.08.001
- Frenette, G., and Sullivan, R. (2001). Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol. Reprod. Dev. 59, 115-121 https://doi.org/10.1002/mrd.1013
- Frenette, G., Lessard, C., and Sullivan, R. (2002). Selected proteins of 'prostasome-like particles' from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol. Reprod. 67, 308-313 https://doi.org/10.1095/biolreprod67.1.308
- Frenette, G., Lessard, C., Madore, E., Fortier, M.A., and Sullivan, R. (2003). Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol. Reprod. 69, 1586-1592 https://doi.org/10.1095/biolreprod.103.019216
- Frenette, G., Legare, C., Saez, F., and Sullivan, R. (2005). Macrophage migration inhibitory factor in the human epididymis and semen. Mol. Hum. Reprod. 11, 575-582 https://doi.org/10.1093/molehr/gah197
- Frenette, G., Thabet, M., and Sullivan, R. (2006). Polyol pathway in human epididymis and semen. J. Androl. 27, 233-239 https://doi.org/10.2164/jandrol.05108
- Frohlich, O., and Young, L.G. (1996). Molecular cloning and characterization of EPI-1, the major protein in chimpanzee (Pan troglodytes) cauda epididymal fluid. Biol. Reprod. 54, 857-864 https://doi.org/10.1095/biolreprod54.4.857
- Gatti, J.L., Metayer, S., Belghazi, M., Dacheux, F., and Dacheux, J.L. (2005). Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol. Reprod. 72, 1452-1465 https://doi.org/10.1095/biolreprod.104.036426
- Gesase, A.P., and Satoh,Y. (2003). Apocrine secretory mechanism: recent findings and unresolved problems. Histol. Histopathol. 18, 597-608
- Hermo, L., and Jacks, D. (2002). Nature’s ingenuity: bypassing the classical secretory route via apocrine secretion. Mol. Reprod. Dev. 63, 394-410 https://doi.org/10.1002/mrd.90023
- Jin, E.J., Choi, Y.A., Sonn, J.K., and Kang, S.S. (2007). Suppression of ADAM 10-induced Delta-1 shedding inhibits cell proliferation during the chondro-inhibitory action of TGF-beta3. Mol. Cells 23, 139-147
- Kim, T., Oh, J., Woo, J.M., Choi, E., Im, S.H., Yoo, Y.J., Kim, D.H., Nishimura, H., and Cho, C. (2006). Expression and relationship of male reproductive ADAMs in mouse. Biol. Reprod. 74, 744-750 https://doi.org/10.1095/biolreprod.105.048892
- Kirchhoff, C., and Hale, G. (1996). Cell-to-cell transfer of glycosylphosphatidylinositol- anchored membrane proteins during sperm maturation. Mol. Hum. Reprod. 2, 177-184 https://doi.org/10.1093/molehr/2.3.177
- Kravets, F.G., Lee, J., Singh, B., Trocchia, A., Pentyala, S.N., and Khan, S.A. (2000). Prostasomes: current concepts. Prostate 43, 169-174 https://doi.org/10.1002/(SICI)1097-0045(20000515)43:3<169::AID-PROS2>3.0.CO;2-D
- Legare, C., Berube, B., Boue, F., Lefievre, L., Morales, C.R., El-Alfy, M., and Sullivan, R. (1999). Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein. Mol. Reprod. Dev. 52, 225-233 https://doi.org/10.1002/(SICI)1098-2795(199902)52:2<225::AID-MRD14>3.0.CO;2-M
- Lin, Y.C., Sun, G.H., Lee, Y.M., Guo, Y.W., and Liu, H.W. (2001). Cloning and characterization of a complementary DNA encoding a human epididymis-associated disintegrin and metalloprotease 7 protein. Biol. Reprod. 65, 944-950 https://doi.org/10.1095/biolreprod65.3.944
- Liu, H.W., Lin, Y.C., Chao, C.F., Chang, S.Y., and Sun, G.H. (2000). GP-83 and GP-39, two glycoproteins secreted by human epididymis are conjugated to spermatozoa during maturation. Mol. Hum. Reprod. 6, 422-428 https://doi.org/10.1093/molehr/6.5.422
- Llorente, A., de Marco, M.C., and Alonso, M.A. (2004). Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line. J. Cell Sci. 117, 5343-5351 https://doi.org/10.1242/jcs.01420
- Nishimura, H., Cho, C., Branciforte, D.R., Myles, D.G., and Primakoff, P. (2001). Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev. Biol. 233, 204-213 https://doi.org/10.1006/dbio.2001.0166
- Nishimura, H., Kim, E., Nakanishi, T., and Baba, T. (2004). Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. J. Biol. Chem. 279, 34957-34962 https://doi.org/10.1074/jbc.M314249200
- Oh, J., Woo, J.M., Choi, E., Kim, T., Cho, B.N., Park, Z.Y., Kim, Y.C., Kim, D.H., and Cho, C. (2005). Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem. Biophys. Res. Commun. 331, 1374-1383 https://doi.org/10.1016/j.bbrc.2005.04.067
- Perry, A.C., Jones, R., Barker, P.J., and Hall, L. (1992). A mammalian epididymal protein with remarkable sequence similarity to snake venom haemorrhagic peptides. Biochem. J. 286, 671-675 https://doi.org/10.1042/bj2860671
- Primakoff, P., and Myles, D.G. (2000). The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet. 16, 83-87 https://doi.org/10.1016/S0168-9525(99)01926-5
- Rejraji, H., Vernet, P., and Drevet, J.R. (2002). GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations. Mol. Reprod. Dev. 63, 96-103 https://doi.org/10.1002/mrd.10136
- Rejraji, H., Sion, B., Prensier, G., Carreras, M., Motta, C., Frenoux, J.M., Vericel, E., Grizard, G., Vernet, P., and Drevet, J.R. (2006). Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation. Biol. Reprod. 74, 1104-1113 https://doi.org/10.1095/biolreprod.105.049304
- Saez, F., Frenette, G., and Sullivan, R. (2003). Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. J. Androl. 24, 149-154 https://doi.org/10.1002/j.1939-4640.2003.tb02653.x
- Seals, D.F., and Courtneidge, S.A. (2003). The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17, 7-30 https://doi.org/10.1101/gad.1039703
- Sullivan, R., Saez, F., Girouard, J., and Frenette, G. (2005). Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol. Dis. 35, 1-10 https://doi.org/10.1016/j.bcmd.2005.03.005
- Sun, G.H., Lin, Y.C., Guo, Y.W., Chang, S.Y., and Liu, H.W. (2000). Purification of GP-83, a glycoprotein secreted by the human epididymis and conjugated to mature spermatozoa. Mol. Hum. Reprod. 6, 429-434 https://doi.org/10.1093/molehr/6.5.429
- Udenfriend, S., and Kodukula, K. (1995) How glycosylphosphatidylinositol- anchored membrane proteins are made. Annu. Rev. Biochem. 64, 563-591 https://doi.org/10.1146/annurev.bi.64.070195.003023
- Weininger, R.B., Fisher, S., Rifkin, J., and Bedford, J.M. (1982). Experimental studies on the passage of specific IgG to the lumen of the rabbit epididymis. J. Reprod. Fertil. 66, 251-258 https://doi.org/10.1530/jrf.0.0660251
Cited by
- Egg hull formation in Callochiton dentatus (Mollusca, Polyplacophora): the contribution of microapocrine secretion : Egg hull formation in Callochiton vol.129, pp.4, 2009, https://doi.org/10.1111/j.1744-7410.2010.00208.x
- Extracellular Domain of V-Set and Immunoglobulin Domain Containing 1 (VSIG1) Interacts with Sertoli Cell Membrane Protein, while Its PDZ-Binding Motif Forms a Complex with ZO-1 vol.30, pp.5, 2009, https://doi.org/10.1007/s10059-010-0138-4
- Post Testicular Sperm Maturational Changes in the Bull: Important Role of the Epididymosomes and Prostasomes vol.2011, pp.None, 2009, https://doi.org/10.4061/2011/757194
- The emerging role of matrix metalloproteases of the ADAM family in male germ cell apoptosis vol.1, pp.3, 2009, https://doi.org/10.4161/spmg.1.3.17894
- On the ancestral recruitment of metalloproteinases into the venom of snakes vol.60, pp.4, 2012, https://doi.org/10.1016/j.toxicon.2012.02.006
- Testicular and epididymal ADAMs: expression and function during fertilization vol.9, pp.10, 2009, https://doi.org/10.1038/nrurol.2012.167
- Cell-Free Seminal mRNA and MicroRNA Exist in Different Forms vol.7, pp.4, 2009, https://doi.org/10.1371/journal.pone.0034566
- Expression and function of the testis-predominant protein LYAR in mice vol.35, pp.1, 2009, https://doi.org/10.1007/s10059-013-2271-3
- The function of chaperone proteins in the assemblage of protein complexes involved in gamete adhesion and fusion processes. vol.145, pp.2, 2009, https://doi.org/10.1530/rep-12-0316
- Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology vol.146, pp.1, 2009, https://doi.org/10.1530/rep-13-0058
- Comparative Transcriptome Analysis of the Accessory Sex Gland and Testis from the Chinese Mitten Crab ( Eriocheir sinensis ) vol.8, pp.1, 2009, https://doi.org/10.1371/journal.pone.0053915
- CLCAs - A Family of Metalloproteases of Intriguing Phylogenetic Distribution and with Cases of Substituted Catalytic Sites vol.8, pp.5, 2009, https://doi.org/10.1371/journal.pone.0062272
- Vesicular transfer of membrane components to bovine epididymal spermatozoa vol.353, pp.3, 2013, https://doi.org/10.1007/s00441-013-1633-7
- High-resolution helium ion microscopy of epididymal epithelial cells and their interaction with spermatozoa vol.20, pp.10, 2009, https://doi.org/10.1093/molehr/gau052
- Prostasomes: extracellular vesicles from the prostate vol.147, pp.1, 2014, https://doi.org/10.1530/rep-13-0358
- Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane vol.29, pp.2, 2009, https://doi.org/10.1096/fj.14-259382
- Development of Apical Blebbing in the Boar Epididymis vol.10, pp.5, 2009, https://doi.org/10.1371/journal.pone.0126848
- Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature vol.21, pp.5, 2015, https://doi.org/10.1093/humupd/dmv027
- Reduced Fertility and Altered Epididymal and Sperm Integrity in Mice Lacking ADAM71 vol.93, pp.3, 2015, https://doi.org/10.1095/biolreprod.115.130252
- Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects vol.7, pp.7, 2009, https://doi.org/10.2217/epi.15.58
- Sperm Proteome Maturation in the Mouse Epididymis vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0140650
- Quantitative Glycopeptide Changes in Rat Sperm During Epididymal Transit1 vol.94, pp.4, 2009, https://doi.org/10.1095/biolreprod.115.134114
- PLAG1 deficiency impairs spermatogenesis and sperm motility in mice vol.7, pp.None, 2009, https://doi.org/10.1038/s41598-017-05676-4
- Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility vol.15, pp.1, 2009, https://doi.org/10.1186/s12916-017-0817-5
- Validating Missing Proteins in Human Sperm Cells by Targeted Mass-Spectrometry- and Antibody-based Methods vol.16, pp.12, 2009, https://doi.org/10.1021/acs.jproteome.7b00374
- Extracellular Vesicles in Human Reproduction in Health and Disease vol.39, pp.3, 2009, https://doi.org/10.1210/er.2017-00229
- Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ vol.86, pp.9, 2019, https://doi.org/10.1002/mrd.23224
- Weighted single-step GWAS identified candidate genes associated with semen traits in a Duroc boar population vol.20, pp.1, 2009, https://doi.org/10.1186/s12864-019-6164-5
- ANDROGENIC FUNCTION OF TESTES AND STATE OF SPERMS IN YOUNG AND AGING RATS AFTER LONG INHIBITION OF STEROID AROMATASE FOLLOWED BY ITS WITHDRAWAL vol.65, pp.6, 2009, https://doi.org/10.15407/fz65.06.003
- Quantitative Proteomic Analysis of Seminal Plasma, Sperm Membrane Proteins, and Seminal Extracellular Vesicles Suggests Vesicular Mechanisms Aid in the Removal and Addition of Proteins to the Ram Sper vol.20, pp.12, 2009, https://doi.org/10.1002/pmic.201900289
- Roles of male reproductive tract extracellular vesicles in reproduction vol.85, pp.2, 2009, https://doi.org/10.1111/aji.13338