• Title/Summary/Keyword: secondary wave

Search Result 246, Processing Time 0.038 seconds

The Effect of the Secondary Annular Stream on Supersonic Jet

  • Lee, Kwon-Hee;Toshiaki Setoguchi;Shigeru Matsuo;Kim, Hyeu-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1793-1800
    • /
    • 2003
  • The present study addresses an experimental investigation of the near field flow structures of supersonic, dual, coaxial, free, jet, which is discharged from the coaxial annular nozzle. The secondary stream is made from the annular nozzle of a design Mach number of 1.0 and the primary inner stream from a convergent-divergent nozzle. The objective of the present study is to investigate the interactions between the secondary stream and inner supersonic jets. The resulting flow fields are quantified by pitot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the primary jet are varied to obtain over-expanded flows and moderately under-expanded flows at the exit of the coaxial nozzle. The pressure ratio of the secondary annular stream is varied between 1.0 and 4.0. The results show that the secondary annular stream significantly changes the Mach disc diameter and location, and the impact pressure distributions. The effects of the secondary annular stream on the primary supersonic jet flow are strongly dependent on whether the primary jet is under-expanded or over-expanded at the exit of the coaxial nozzle.

The Secondary Chamber Pressure Characteristics of Sonic/Supersonic Ejector-Diffuser System (음속/초음속 이젝터 시스템의 2차정체실 압력특성)

  • Jung, S.J.;Lee, J.H.;Lee, K.H.;Choi, B.G.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.646-651
    • /
    • 2001
  • The present study is an experimental work of the sonic/supersonic air ejector-diffuser system. The pressure-time dependence in the secondary chamber of this ejector system is measured to investigate the steady operation of the ejector system. Six different primary nozzles of two sonic nozzles, two supersonic nozzles, petal nozzle, and lobed nozzle are employed to drive the ejector system at the conditions of different operating pressure ratios. Static pressures on the ejector-diffuser walls are to analyze the complicated flows occurring inside the system. The volume of the secondary chamber is changed to investigate the effect on the steady operation. the results obtained show that the volume of the secondary chamber does not affect the steady operation of the ejector-diffuser system but the time-dependent pressure in the secondary chamber is a strong function of the volume of the secondary chamber.

  • PDF

Theoretical Analysis of Annular Injection Supersonic Ejector with a Simple Funnel Shock Wave Model (깔때기 경사충격파를 고려한 환형 분사 초음속 이젝터 이론해석)

  • Kim Se-Hoon;Kwon Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • In an annular injection supersonic ejector, the supersonic primary flow is injected along the side wall, therefore a funnel-shaped shock wave is generated by the contraction angle of the mixing chamber. In the present study, we developed a simple funnel shock wave model using 2-D wedge and conical shock wave relations. In result, the secondary flow pressure can be predicted more accurately than using a simple 2-D wedge shock wave model. Through the same analysis, the compression ratio and the adiabatic efficiency according to the entrainment ratio were calculated.

An Experimental Study of Under-Expanded Coaxial, Swirling Jets (부족팽창 동축 스월 제트유동 특성에 관한 실험적 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.580-585
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic/supersonic swirling jets are emitted from the sonic inner nozzle and the outer annular nozzle produce the co-swirling and counter swirling against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pitot impact and static pressure measurements and visualized by using the Schliern optical method. The experiment is performed for different swirl intensity and pressure ratio. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets and the effects of the secondary counter-swirling jet is similar to the secondary co-swirl jet case.

  • PDF

Thrust Vectoring Control by Injection of Secondary Jets Inside Supersonic Nozzle (초음속 노즐 내부 이차제트 분출을 통한 추력편향 제어에 관한 연구)

  • Yoon, Sang-Hoon;Kim, Kuk-Jin;Min, Seong-Kyu;Lee, Yeol;Chun, Dong-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.349-352
    • /
    • 2008
  • Thrust vectoring control by injection of secondary jet inside a convergent-divergent supersonic nozzle was studied by both experimentally and computationally. For various stagnation pressure of the secondary jet injected at a specific location(12 mm-downstream of throat) in the divergent section of nozzle, the characteristics of thrust vectoring were observed. Present numerical results were compared with previous investigators' results and Schlieren flow visualizations for the identical boundary conditions, and it showed a qualitatively good agreement. It was also noticed that the characteristics of thrust vectoring is strongly related to the reflection structure of oblique shock inside nozzle, ie., the pressure ratio of the secondary jet, SPR.

  • PDF

FLOW INSTABILITY IN A BAFFLED CHANNEL FLOW (배플이 부착된 채널 유동의 불안정성)

  • Kang, C.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Flow instability is investigated in a two-dimensional channel with thin baffles placed symmetrically in the vertical direction and periodically in the streamwise dircetion. At low Reynolds numbers, the flow is steady and symmetric. Above a critical Reynolds number, the steady flow undergoes a Hopf bifurcation leading to unsteady periodic flow. As Reynolds number further increases, we observe the onset of secondary instability. At high Reynolds numbers, the two-dimensional periodic flow becomes three dimmensional. To identify the onset of secondary instability, we carry out Floquet stability analysis. We obseved the transition to 3D flow at a Reynolds number of about 125. Also, we computed dominant spanwise wavenumbers near the critical Reynolds number, and visualized vortical structures associated with the most unstable spanwise wave.

Theoretical Analysis of an Annular Injection Supersonic Ejector Equipped with a Second-Throat (이차목을 갖는 환형 분사 초음속 이젝터 이론 해석)

  • Kim, Se-Hoon;Jin, Jung-Kun;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1285-1290
    • /
    • 2005
  • A theoretical analysis of an annular injection supersonic ejector equipped with a second-throat was developed under the assumption that the secondary flow is choked aerodynamically by interaction with primary flow in the mixing chamber. The predicted secondary flow pressure agrees reasonably well with the measurements. Using the analysis, the compression ratio, the secondary flow Mach number, and the location of the choking point were presented in terms of entrainment ratio.

A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection (2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구)

  • Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

Design of All-SiC Lightweight Secondary and Tertiary Mirrors for Use in Spaceborne Telescopes

  • Bae, Jong-In;Lee, Haeng-Bok;Kim, Jeong-Won;Kim, Myung-Whun
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.60-68
    • /
    • 2022
  • We report on the design of the secondary and the tertiary mirrors used in lightweight assemblies made entirely of silicon carbide (SiC). The essential design points are weight reduction within the acceptable deformation of the mirror surface by gravity release, temperature change, and vibration during or after space launch. To find a design that achieves the target requirements, we established finite element models for various candidate designs and subjected each one to wave front error analyses along gravity directions and in operation temperatures. We also calculated the natural frequencies of the candidate assemblies. Our study suggested that a triangular cell with bipod flexure support can satisfy the target weight within the requirements.