• Title/Summary/Keyword: secondary vegetation

Search Result 117, Processing Time 0.02 seconds

Some Proposed Indices of Structural Regeneration of Secondary Forests and Their Relation to Soil Properties

  • Aweto, Albert Orodena
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.292-303
    • /
    • 2021
  • Studies that relate the structure of tropical regrowth vegetation to soil properties are generally lacking in the literature. This study proposes three indices for assessing the structural regeneration of secondary forests. They are: (1) the tree diameter class, (2) the plant life form and (3) the woody/herbaceous plants ratio indices. They were applied to assess the regeneration status of forest regrowth vegetation (aged 1-10 years), derived savanna regrowth vegetation in south western Nigeria, and to secondary forests in different stages of succession in Columbia and Venezuela, Bolivia, Mexico in South and Central America and semi-arid savanna in Ethiopia and seasonal deciduous forest successional stages in India. In all the cases, the indices increased with increasing age of regrowth vegetation and hence, with increasing structural complexity of regenerating vegetation. The tree diameter class index increased from 32.1% in a 9-year secondary forest to 69.0% in an 80-year-old secondary forest in Columbia and Venezuela and from 0.4% in a 1-year fallow to 20.9% in 10-year regrowth vegetation in southwestern Nigeria. In semi-arid savanna in northern Ethiopia, the woody/herbaceous plants ratio index increased from 18.1% in a 5-year protected grazing enclosure to 75.1% in 15-year protected enclosure, relative to the status of 20-year enclosure. The indices generally had correlations of 0.6-0.90 with species richness and Simpson's/Margalef's species diversity, implying that they are appropriate measures of ecosystem development over time. The proposed indices also had strong and positive correlations with soil organic carbon and nutrients. They are therefore, significant indicators of fertility status.

Vegetation Management Units and Its Landscape Structures of Mt. Cheolma, in Incheon City, Korea

  • Cho, Hyun-Je;Cho, Je-Hyung
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.71-77
    • /
    • 2002
  • For landscape ecological management of the isolated forestlands in Incheon city located in the western tip of South Korea, the forest vegetation of Mt. Cheolma was classified phytosciologically and mapped out its spatial distribution at a scale of 1:5,000. Characteristics of forest landscape structures were discussed in terms of the number and size of patches obtained by analyzing vegetation map. Units to manage the forest vegetation were categorized into eighteen communities, seventeen groups, and sixteen subgroups. Landscape elements were classified into five types: secondary vegetation, introduced vegetation for forestry (IVF), introduced vegetation for agriculture (IVA), and other elements. Two hundred and ninety-three forest landscape patches covers 443.3ha of which IVF accounted for 316.8ha(71.5%), the largest portion, secondary vegetation for f01.2ha(22.8%), IVA for 6.2ha(1.4%), and others for 19.1ha(4.3%). The ratio of natural forest elements of 31.9% showed that this area was mainly comprised of artificially introduced vegetation, such as Robinia pseudoacacia plantation and Pinus rigida plantation. Forest landscape patches have a mean area of 4.5ha, a density of 66.1/100ha, and a diversity index of 0.87. It was estimated that differentiation of patches recognized in community level would be related to human interference and those in subordinate level to natural processes.

  • PDF

Vegetation Management Units and Its Landscape Structures of Mt. Cheolma, in Incheon City, Korea

  • Cho, Hyun-Je;Cho, Je-Hyuung
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.205-211
    • /
    • 2002
  • For landscape ecological management of the isolated forestlands in Incheon city located in the western tip of South Korea, the forest vegetation of Mt. Cheolma was classified phytosciologically and mapped out its spatial distribution at a scale of 1:5,000. Characteristics of forest landscape structures were discussed in terms of the number and size of patches obtained by analy zing vegetation map. Units to manage the forest vegetation were categorized into eighteen communities, seventeen groups, and sixteen subgroups. Landscape elements were classified into five types: secondary vegetation, introduced vegetation for forestry (IVF), introduced vegetation for agriculture (IVA), and other elements. Two hundred and ninety-three forest landscape patches covers 443.3ha, of which IVF accounted for 316.8ha(71.5$\%$), the largest portion, secondary vegetation for 101.2ha(22.8$\%$), IVA for 6.2ha(1.4$\%$), and others for 19.1ha(4.3$\%$). The ratio of natural forest elements of 31.9$\%$ showed that this area was mainly comprised of artificially introduced vegetation, such as Robinia pseudoacacia plantation and Pinus rigida plantation. Forest landscape patches have a mean area of 4.5ha, a density of 66.1/100ha, and a diversity index of 0.87. It was estimated that differentiation of patches recognized in community level would be related to human interference and those in subordinate level to natural processes.

Landscape Structure and Ecological Restoration of Mt. Hwangryung in Pusan, korea (부산시 황령산의 경관구조와 생태적 복원)

  • 이창석;조현제
    • The Korean Journal of Ecology
    • /
    • v.21 no.6
    • /
    • pp.791-797
    • /
    • 1998
  • An attempt to clarify the landscape structure of urban areas was carried out on Mt. Hwangryung located in the center of Pusan, southern Korea. By means of aerial photographs and field survey, a vegetation map including land-use pattern was made. Landscape structure was described by analyzing the vegetation map. Landscape element types were classified into secondary forest, introduced plantation, and other elements including urbanized area. almus firma and Pinus thunbergii communities, introduced plantation elements, formed matrix and some secondary forest elements and the other artificial plantations of small scale tended to distribute as small patches in such matrix. The number of patches per unit area in secondary forest elements was more than that in introduced plantation element. The result on patech size was vice versa. As the results of landscape ecological analyses, it was estimated that differentiation of patches recognized in community level would be related to artificial interference and those in sub-communities levels to natural process such as progression of succession. On the other hand, restoration plans in viewpoints of restoration and landscape ecology were suggested to improve ecological quality of Mt. hwangryung.

  • PDF

Landscape Ecological Studies on Structure and Dynamics of Plant Populations on Vegetation-Landscape Patterns in Rural Regions: I. The Effect of Patch Shape on the Initial Population Structure of Pine and Oaks

  • Rim, Young-Deuk;Hong, Sun-Kee
    • The Korean Journal of Ecology
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 1999
  • Secondary vegetation. the holistically integrated system of nature and human being, is the complicated ecosystem that is composed of natural and man-created factors. Understanding the ecological function of secondary vegetation supplies us many important informations for sustainable landscape management and ecological restoration planning. In this research, we tried to examine the shape effect of vegetation patch on early structure of populations of pine and oaks. Moreover. we also tried to clarify the ecological functions of patch edge by exploring the patch effect on germination using patch index. In addition, we present the landscape structure of man -made vegetation of our study area, and setting experimental design of research. Vegetation landscape of study area is typical human disturbed landscape mainly composed of disturbance patches. Vegetation types of graveyard and managed pine forest were controlled by periodically repeated management. However, current seedlings of pine occurred well at both vegetation types. Presence of both saplings were more controlled in managed pine forest (PDM) and graveyard (G) than those of undergrowth (PD) and forest edge (FE) with canopy trees. The number of pine seedlings increased with patch size and patch perimeter. That of oak seedlings was, however, not significantly different. Larger graveyards provided higher light availability for germination of pine seedlings. We think, however, most seedlings of both species in the large sized graveyards without shade will die more easily than that of small sized ones before rainy summer. Relationships between patch shape and germination of two woody species cannot be exactly explained enough yet in these results. More informations on spatial interaction of the total species with differently sized patches are necessary to solve the concept of patch effect on species colonization.

  • PDF

Secondary human impacts on the forest understory of Ulleung Island, South Korea, a temperate island

  • Andersen, Desiree
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.202-211
    • /
    • 2019
  • Oceanic islands are biologically important for their unique assemblages of species and high levels of endemism and are sensitive to environmental change because of their isolation and small species source pools. Habitat destruction caused by human landscape development is generally accepted as the main cause of extinction on islands, with exotic species invasion a secondary cause of extinction, especially on tropical islands. However, secondary impacts of human development (e.g., general degradation through resource use and exotic species introduction) are understudied on temperate islands. To determine secondary impacts of human development on the understory vegetation community, 90 field sites on Ulleung Island, South Korea, were sampled during the summer of 2016. Understory vegetation was chosen as it is a proxy for ecosystem health. Diversity and percent cover of introduced, native, and endemic species were tested against proximity to developed areas and trail usage using a model selection approach. Diversity was also tested against percent cover of three naturalized species commonly found in survey plots. The main finding was that distance to development, distance to town, and trail usage have limited negative impacts on the understory vegetation community within best-supported models predicting native and introduced cover and diversity. However, endemic species cover was significantly lower on high usage trails. While there are no apparent locally invasive plant species on the island at the time of this study, percent cover of Robinia pseudoacacia, a naturalized tree species, negatively correlated with plot diversity. These findings indicate that forests on Ulleung Island are not experiencing a noticeable invasion of understory vegetation, and conservation efforts can be best spent preventing future invasions.

Ecological Diagnosis on Mt. nam in Seoul, Korea (남산의 생태학적 진단)

  • 이창석;문정숙;김재은;조현제;이남주
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.713-721
    • /
    • 1998
  • The effects of artificial interference on the vegetation landscape in Mt. Nam of Seoul, Korea were clarified by analysing the distribution of vegetation landscape element and the number and size of patch depicted as a vegetation map in terms of landscape ecological principles. The effects of artificial interference on vegetation were also confirmed from the environmental gradient analysis on plant community extended from the lowland to the peak of that mountain. Vegetation landscape elements were divided into plantation and secondary forest in actual vegtation map. The ratio of plantation to secondary forest was higher in the lowland below mid-slope and the southern slope. Most afforested land were occupied by Robinia pseudoacacia and Populus tomentoglandulosa, Pinus rigida, P. koraiensis, Metasequoia glyptostroboides, Alnus hirsuta and so on are localy planted. In addition, projects to replace those afforested trees by P. densiflora as a kind of campaign for "Restoration of the one original feature of Mt. Nam" or to replace those tree species by planting young Abies holophylla or P. koraiensis under the mature afforested trees are also carried out in recent years. In cases of secondary forest, the southern slope was dominated by P. densiflora and the northern one by Q. mongolica. But the lowland of the northern slope is dominated by P. densiflora as the same as that in the southern slope. Vegetation landscape elements in Mt. Nam were much simplified comparing with that of suburban area around Seoul. The number of patches, which reflects the degree of diverse artificial interference was more in the lower area than in the upper area and more in the southern slope than in the northern one. On the other hand, the size of patch showed the antagonistic tendency to that of the number of patch. As a result of environmental gradient analysis, vegetation distribution in Mt. Nam was different from that in suburban area around Seoul. For example, Alnus japonica community, Zelkova serrata community, and Carpinus laxiflora community, which is established in mountain comparatively rare in artificial interference disappeared in Mt. Nam. As a result of analysis on vegetational succession in P. densiflora community and Q. mongolica community, both communities showed a tendency of retrogressive succession differently from that in control site located in suburban area around Seoul. In addition, species composition of P. densiflora and Q. mongolica communities in Mt. Nam were also different from those in Mt. Surak located around Seoul. It was interpreted that those results were originated from the environmental pollution and excessive arti ficial interferences.rferences.

  • PDF

Development of Vegetation Structure after Forest Fire in the East Coastal Region, Korea (동해안 산불 피해지에서 산불 후 경과 년 수에 따른 식생 구조의 발달)

  • 이규송;정연숙;김석철;신승숙;노찬호;박상덕
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.99-106
    • /
    • 2004
  • We developed the estimation model for the vegetation developmental processes on the severely burned slope areas after forest fire in the east coastal region, Korea. And we calculated the vegetation indices as a useful parameter for the development of land management technique in the burned area and suggested the changes of the vegetation indices after forest fire. In order to estimate the woody standing biomass in the burned area, allometric equations of the 17 woody species regenerated by sprouter were investigated. According to the our results, twenty year after forest fire need for the development to the normal forest formed by 4 stratum structure, tree, sub-tree, shrub and herb layer. The height of top vegetation layer, basal area and standing biomass of woody species show a tendency to increase linearly, and the ground vegetation coverage and litter layer show a tendency to increase logarithmically after forest fire. Among vegetation indices, Ive and Ivcd show a tendency to increase logarithmically, and Hcl and Hcdl show a tendency to increase linearly after forest fire. The spatial variation of the most vegetation factors was observed in the developmental stages less than the first 5 years which were estimated secondary disaster by soil erosion after forest fire. Among vegetation indices, Ivc and Ivcd were the good indices for the representation of the spatial heterogeneity in the earlier developmental stages, and Hcl and Hcdl were the useful indices for the long-term estimation of the vegetation development after forest fire.

Phytosociological Study on the Froest Begetation of Mt. Kaya (가야산 삼림식생에 대한 식물사회학적 연구)

  • Lee, Ho-Joon;Byun, Doo-Weon;Kim, Won-Sik;Lee, Hae-Seok;Kim, Chang-Ho
    • The Korean Journal of Ecology
    • /
    • v.16 no.3
    • /
    • pp.287-303
    • /
    • 1993
  • A phytosociological study of forest vegetation of Mt. Kaya was carried out from August 1988 to September 1992. The forest vegetation of the area was classified into 3 communities (Quercus monogolica community, Lindera erythrocarpa community, Pinus densiflora community) and 3 subunits (Rhododendron mucronulatum subunit, Platycarya strobilacea subunit, typical subunit of Pinusdensiflora community). The Pinus densiflora community was located at the lower altitudes (100~300m) than those of other communities. The Lindera erythrocarpa community was located at the upper altitude (500m). Most of the inverstigated area were occupied by the secondary forest of Pinus densiflora community in the actual vegetation map and the profile diagram, suggesting that it was frequently destroyed by human interference

  • PDF

Phytosocological Study on Montance Forest Vegetation at periphery of Seoul, Korea (서울근교 산지의 삼림식생에 대한 식물사회학적 연구)

  • Kim, Jong-Won;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.11 no.2
    • /
    • pp.97-107
    • /
    • 1988
  • The forest vegetation occurring mainly at the mountain areas in periphery of Seoul were inversigated phyeosociologically. The granitic rocky outcrops are typical physiognomy on the study areas. The greater part of forests was the secondary vegetation to be disturbed by hyman impacts, because of being situated near the metropolis with a highly dense population. Four community types were largely differentiated by species composition. The representitive ones were the Quercus monogolica community and Pinus densiflora-Juniperus schinensis community, which are predominantly gorwing at the slopes above about 100m in altituse and the rocky ridges, respectively. The Betula chinensis-Potentilla dickinsii community at several single-peaks of windswept and the Zelkova serrata-Prunus padus community at stony valley are sporadically growing in a small area.

  • PDF