• Title/Summary/Keyword: secondary reaction

Search Result 806, Processing Time 0.028 seconds

Selective Functionalization of Calix[6]arene

  • 남계천;박기숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.153-157
    • /
    • 1995
  • Calix[6]arenes are selectively dialkylated at the lower rim and further functionalized by the aminomethylation and Claisen Rearrangement reactions. Dialkylation was conducted by the reaction of calix[6]arene and alkyl halides such as benzyl bromide, allyl bromide, ethyl bromoacetate, propyl bromide, and methyl iodide under the carefully controlled reaction conditions. Aminomethylation was carried out with the treatment of disubstituted calix[6]arene and secondary amine in the presence of formaldehyde. Claisen rearrangement reaction of the O-diallylcalix[6]arene produced the p-diallylcalix[6]arene.

Modification of Pullulan Using Dextransucrase and Characterization of the Modified Pullulan. (덱스트란수크라제를 이용한 플루란의 변형 및 특성조사)

  • ;;;;;;John F. Robyt
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.264-268
    • /
    • 1998
  • Many enzymes catalyze a primary reaction and/or secondary reaction. Dextransucrase usually synthesizes dextran from sucrose as a primary reaction. The secondary reaction of dextransucrase is the transfer of glucose from sucrose to carbohydrate accepters. We have reacted dextransucrase from Leuconostoc mesenteroides B-742CB with sucrose and pullulan as an acceptor under different reaction conditions; various concentrations of pullulan, enzyme, sucrose and different pHs and temperatures of reaction digests. The yield of modified pullulan was 57%(<${\pm}$5%) of theoretical under the reaction condition of pH 5.2, temperature 28$^{\circ}C$, 0.37% of pullulan, and 0.l U/$m\ell$ of dextransucrase. Modified products were more resistant against the hydrolysis of pullulanase and endo-dextranase than those of native pullulan. The positions of glucose substitution in the modified products were determined by methylation followed by acid hydrolysis and analyzed by TLC. The products were modified by the addition of glucose to the position of C3, C4, C6 free hydroxyl group of glucose residues in the pullulan.

  • PDF

Quantitative Analysis of Grafted Methacrylate Groups by Michael Addition Reaction between Primary and Secondary Amino Groups on the Silica Nanoparticle Surface with 3-(Acryloyloxy)-2-Hydroxypropyl Methacrylate (실리카 나노 입자 표면에 결합된 1차 및 2차 아미노기와 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 의해 도입되는 메타크릴레이트기의 정량적 분석)

  • Lee, Sangmi;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.300-310
    • /
    • 2015
  • In this study, we modified silica nanoparticles with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TPED) silane coupling agent, which has one primary and one secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce methacrylate groups by Michael addition reaction. We found about 30% of N-H groups on the TPED modified silica surface reacted with acrylate groups of AHM compared to about 85% of reaction between N-H groups of pure TPED with acrylate groups of pure AHM. This lower degree of Michael addition reaction for heterogeneous reaction between N-H groups on the solid TPED modified silica and liquid AHM compared to homogeneous reaction between pure liquid TPED and pure liquid AHM may be caused by lower mobility of grafted amino groups of TPED moiety and higher steric hindrance caused by solid silica particles.

Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries (전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성)

  • 박재홍;김정식;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF

Evolution pathway of CZTSe nanoparticles synthesized by microwave-assisted chemical synthesis

  • Reyes, Odin;Sanchez, Monica F.;Pal, Mou;Llorca, Jordi;Sebastian, P.J.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.203-214
    • /
    • 2017
  • In this study we present the reaction mechanism of $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles synthesized by microwave-assisted chemical synthesis. We performed reactions every 10 minutes in order to identify different phases during quaternary CZTSe formation. The powder samples were analyzed by x-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that in the first minutes copper phases are predominant, then copper and tin secondary phases react to form ternary phase. The quaternary phase is formed at 50 minutes while ternary and secondary phases are consumed. At 60 minutes pure quaternary CZTSe phase is present. After 60 minutes the quaternary phase decomposes in the previous ternary and secondary phases, which indicates that 60 minutes is ideal reaction time. The EDS analysis of pure quaternary nanocrystals (CZTSe) showed stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. In conclusion, the evolution pathway of CZTSe synthesized by this novel method is similar to other synthesis methods reported before. Nanoparticles synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.

ULTRA-FINE PARTICLES AND GASEOUS VOLATILE ORGANIC COMPOUND EXPOSURES FROM THE REACTION OF OZONE AND CAR-AIR FRESHENER DURING METROPOLIS TRAVEL

  • Lamorena, Rheo B.;Park, Su-Mi;Bae, Gwi-Nam;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.72-80
    • /
    • 2007
  • Experiments were conducted to identify the emissions from the car air freshener and to identify the formation of ultra-fine particles and secondary gaseous compounds during the ozone-initiated oxidations with emitted VOCs. The identified primary constituents emitted from the car air freshener in this study were $\alpha$-pinene, $\beta$-pinene, $\rho$-cymene and limonene. Formation of ultra-fine particles (4.4-160 nm) was observed when ozone was injected into the chamber containing emitted monoterpenes from the air freshener. Particle number concentrations, particle mass concentrations, and surface concentrations were measured in time dependent experiments to describe the particle formation and growth within the chamber. The irritating secondary gaseous products formed during the ozone-initiated reactions include formaldehyde, acetaldehyde, acrolein, acetone, and propionaldehyde. Ozone concentration (50 and 100 ppb) and temperature (30 and $40^{\circ}C$) significantly affect the formation of particles and gaseous products during the ozone-initiated reactions. The results obtained in this study provided an insight on the potential exposure of particles and irritating secondary products formed during the ozone-initiated reaction to passengers in confined spaces.

A Method for Evaluation of Hollow Existence in Sublayers of Concrete Pavement Considering Pavement Stiffness (포장강성을 고려한 콘크리트 포장하부 공동유무 평가방법)

  • Sohn, Dueck Su;Lee, Jae Hoon;Jeong, Ho Seong;Park, Joo Young;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2013
  • PURPOSES: The existing method evaluating the existence of the hollows in concrete pavement does not consider the stiffness of pavement. In addition, the method uses unreasonable logic judging the hollow existence by the deflection caused by zero loading. In this study, the deflection of slab corner due to heavy weight deflectometer (HWD) was measured in concrete pavement sections where underground structures are located causing the hollows around them. METHODS: The modulus of subgrade reaction obtained by comparing the actual deflection of slab to the result of finite element analysis was calibrated into the composite modulus of subgrade reaction. The radius of relative stiffness was calculated, and the relationship between the ratio of HWD load to the radius of relative stiffness and the slab deflection was expressed as the curve of secondary degree. RESULTS: The trends of the model coefficients showing width and maximum value of the curve of secondary degree were analyzed by categorizing the pavement sections into three groups : hollows exist, additional investigation is necessary, and hollows do not exist. CONCLUSIONS: The results analyzed by the method developed in this study was compared to the results analyzed by existing method. The model developed in this study will be verified by analyzing the data obtained in other sections with different pavement structure and materials.

The Preparation of K-GIC and its Anodic Characteristics of Lithium Ion Secondary Battery (K-GIC의 합성 및 리튬이온이차전지에서의 부극특성)

  • Kim, Hyun-Joong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.786-790
    • /
    • 1998
  • K-GIC of the new carbon electrode to improve performance of carbon negative electrode in lithium ion secondary battery was prepated and its electrical characteristics were studied. Form this study, intercalated K quantity was increased in order of $2>3>1mole/{\ell}$ of KCl solution. And, for KCl solution of 1mole, the mole ratio of carbon and potassium was 156~388 carbon/potassium. The proper condition of K-GIC preparation was KCl solution of $1mole/{\ell}$, reaction temperature of $700^{\circ}C$, reaction time of 1 hour. From this condition, the intercalation and deintercalation behavior of lithium was very excellent. Also the reversibility was excellent.

  • PDF

DGEBA-MDA-SN-Hydroxyl Group System and Composites -Cure Kinetics and Mechanism in DGEBA/MDA/SN/HQ System- (DGEBA-MDA-SN-Hydroxyl계 복합재료의 제조 -DGEBA-MDA-SN-HQ계의 경화반응 속도론 및 메카니즘-)

  • Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.517-523
    • /
    • 1994
  • The effects of cure kinetics and mechanism of DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline) with SN(succinonitrile) and HQ(hydroquinone) as an additive and accelerator were investigated. Cure kinetics was evaluated by Kissinger equation and fractional-life method through DSC analysis. The activation energy has hydroxyl group as an accelerator, the activation energy and the starting cure-temperature were lower than those of DGEBA/MDA/SN system. Cure mechanism of those systems was investigated through FT-IR according to the various SN contents. The ratio was SN : HQ = 4 : 1. It has been known that the cure reactions of an epoxy-diamine system are composed of primary amine-epoxy reaction, secondary amino-epoxy reaction and epoxy-hydroxyl group reaction. But in DGEBA/MDA/SN system, primary amino-CN group reaction and CN group-hydroxyl group reaction were added to the above mentioned reactions. These reactions attributed to the long main chain and the low crossliking density. And in DGEBA/MDA/SN/HQ system, hydroxyl group of HQ formed a transition state with epoxide group and amime group and also opened the ring of the epoxide group rapidly, then amino-epoxy reaction took place easily.

  • PDF

Formation of Acid Mine Drainage and Pollution of Geological Environment Accompanying the Sulfidation Zone of Nonmetallic Deposits: Reaction Path Modeling on the Formation of AMD of Tongnae Pyrophyllite Mine (비금속광상의 황화광염대에 수반되는 산성광산배수의 형성과 지질환경의 오염 : 동래납석광산 산성광산배수의 형성에 관한 반응경로 모델링)

  • 박맹언;성규열;고용전
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.405-415
    • /
    • 2000
  • This study was carried out to understand the formation of acid mine drainage (AMD) by pyrophyllite (so-called Napseok)-rainwater interaction (weathering), dispersion patterns of heavy metals, and patterns of mixing with non-polluted water in the Tongnae pyrophyllite mine. Based on the mass balance and reaction path modeling, using both the geochemistry of water and occurrence of the secondary minerals (weathering products), the geochemical evolution of AMD was simulated by computer code of SOLVEQ and CHILLER. It shows that the pH of stream water is from 6.2 to 7.3 upstream of the Tongnae mine. Close to the mine, the pH decreases to 2. Despite being diluted with non-polluted tributaries, the acidity of mine drainage water maintains as far as downstream. The results of modeling of water-rock interaction show that the activity of hydrogen ion increases (pH decreases), the goncentration of ${HCO_3}^-$ decreases associated with increasing $H^+$ activity, as the reaction is processing. The concentration of ${SO_4}^{2-}$first increases minutely, but later increases rapidly as pH drops below 4.3. The concentrations of cations and heavy metals are controlled by the dissolution of reactants and re-dissolution of derived species (weathering products) according to the pH. The continuous adding of reactive minerals, namely the progressively larger degrees of water-rock interaction, causes the formation of secondary minerals in the following sequence; goethite, then Mn-oxides, then boehmite, then kaolinite, then Ca-nontronite, then Mgnontronite, and finally chalcedony. The results of reaction path modeling agree well with the field data, and offer useful information on the geochemical evolution of AMD. The results of reaction path modeling on the formation of AMD offer useful information for the estimation and the appraisal of pollution caused by water-rock interaction as geological environments. And also, the ones can be used as data for the choice of appropriate remediation technique for AMD.

  • PDF