Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.3.203

Evolution pathway of CZTSe nanoparticles synthesized by microwave-assisted chemical synthesis  

Reyes, Odin (Instituto de Energias Renovables-UNAM)
Sanchez, Monica F. (Instituto de Energias Renovables-UNAM)
Pal, Mou (Instituto de Fisica, BUAP)
Llorca, Jordi (Institute of Energy Technologies and Barcelona Research Center, in Multiscale Science and Engineering, Universitat Politecnica de Catalunya, EEBE)
Sebastian, P.J. (Instituto de Energias Renovables-UNAM)
Publication Information
Advances in nano research / v.5, no.3, 2017 , pp. 203-214 More about this Journal
Abstract
In this study we present the reaction mechanism of $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles synthesized by microwave-assisted chemical synthesis. We performed reactions every 10 minutes in order to identify different phases during quaternary CZTSe formation. The powder samples were analyzed by x-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that in the first minutes copper phases are predominant, then copper and tin secondary phases react to form ternary phase. The quaternary phase is formed at 50 minutes while ternary and secondary phases are consumed. At 60 minutes pure quaternary CZTSe phase is present. After 60 minutes the quaternary phase decomposes in the previous ternary and secondary phases, which indicates that 60 minutes is ideal reaction time. The EDS analysis of pure quaternary nanocrystals (CZTSe) showed stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. In conclusion, the evolution pathway of CZTSe synthesized by this novel method is similar to other synthesis methods reported before. Nanoparticles synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.
Keywords
CZTSe; solar cell; nanoparticles; microwave-assisted chemical synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zoppi, G., Forbes, I., Miles, R.W., Dale, P.J., Scragg, J.J. and Peter, L.M. (2009), "$Cu_2ZnSnSe_4$ thin film solar cells produced by selenisation of magnetron sputtered precursors", Prog. Photovoltaics: Res. Appl., 17(5), 315-319.   DOI
2 Ahmadi, M., Pramana, S.S., Xi, L., Boothroyd, C., Lam, Y.M. and Mhaisalkar, S. (2012), Evolution pathway of CIGSe nanocrystals for solar cell applications", J. Phys. Chem. C, 116(14), 8202-8209.   DOI
3 Bhattacharya, R.N., Batchelor, W., Granata, J.E., Hasoon, F., Wiesner, H., Ramanathan, K. and Noufi, R.N. (1998), "CuIn 1- x Ga x Se 2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors", Solar Energy Mater. Solar Cells, 55(1), 83-94.   DOI
4 Brammertz, G., Buffiere, M., Oueslati, S., ElAnzeery, H., Messaoud, K.B., Sahayaraj, S. and Poortmans, J. (2013), "Characterization of defects in 9.7% efficient $Cu_2ZnSnSe_4$-CdS-ZnO solar cells", Appl. Phys. Lett., 103(16), 163904.   DOI
5 Du, Y.F., Zhou, W.H., Zhou, Y.L., Li, P.W., Fan, J.Q., He, J.J. and Wu, S.X. (2012), "Solvothermal synthesis and characterization of quaternary $Cu_2ZnSnSe_4$ particles", Mater. Sci. Semicon. Process., 15(2), 214-217.   DOI
6 Flynn, B., Wang, W., Chang, C.H. and Herman, G.S. (2012), "Microwave assisted synthesis of $Cu_2ZnSnS_4$ colloidal nanoparticle inks", Physica Status Solidi (a), 209(11), 2186-2194.   DOI
7 Ganchev, M., Iljina, J., Kaupmees, L., Raadik, T., Volobujeva, O., Mere, A. and Mellikov, E. (2011), "Phase composition of selenized $Cu_2ZnSnSe_4$ thin films determined by X-ray diffraction and Raman spectroscopy", Thin Solid Films, 519(21), 7394-7398.   DOI
8 Gardner, J.S., Shurdha, E., Wang, C., Lau, L.D., Rodriguez, R.G. and Pak, J.J. (2008), "Rapid synthesis and size control of $CuInS_2$ semi-conductor nanoparticles using microwave irradiation", J. Nanopart. Res., 10(4), 633-641.   DOI
9 Grisaru, H., Palchik, O., Gedanken, A., Palchik, V., Slifkin, M.A. and Weiss, A.M. (2003), "Microwaveassisted polyol synthesis of $CuInTe_2$ and $CuInSe_2$ nanoparticles", Inorganic Chem., 42(22), 7148-7155.   DOI
10 Holubova, J., Cernosek, Z. and Cernoskova, E. (2009), "The selenium based chalcogenide glasses with low content of As and Sb: DSC, StepScan DSC and Raman spectroscopy study", J. Non-Crystal. Solids, 355(37), 2050-2053.   DOI
11 Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W. and Powalla, M. (2016), "Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%", Physica Status Solidi (RRL)-Rapid Res. Lett., 10(8), 583-586.   DOI
12 Li, Z.Q., Shi, J.H., Liu, Q.Q., Chen, Y.W., Sun, Z., Yang, Z. and Huang, S.M. (2011), "Large-scale growth of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_4$/$Cu_2ZnSnS_4$ core/shell nanowires", Nanotechnology, 22(26), 265615.   DOI
13 Jeon, M., Tanaka, Y., Shimizu, T. and Shingubara, S. (2011), "Formation and characterization of single-step electrodeposited $Cu_2ZnSnS_4$ thin films: Effect of complexing agent volume", Energy Procedia, 10, 255-260.   DOI
14 Lee, P.Y., Shei, S.C. and Chang, S.J. (2013), "Evolution pathways for the formation of Nano-$Cu_2ZnSnSe_4$ absorber materials via elemental sources and isophorondiamine chelation", J. Alloys Compounds, 574, 27-32.   DOI
15 Lee, P.Y., Chang, S.P., Hsu, E.H. and Chang, S.J. (2014), "Synthesis of CZTSe nanoink via a facile one-pot heating route based on polyetheramine chelation", Solar Energy Mater. Solar Cells, 128, 156-165.   DOI
16 Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K. and Guha, S. (2011), "The path towards a highperformance solution-processed kesterite solar cell", Solar Energy Mater. Solar Cells, 95(6), 1421-1436.   DOI
17 Liu, W., Wu, M., Yan, L., Zhou, R., Si, S., Zhang, S. and Zhang, Q. (2011), "Noninjection synthesis and characterization of $Cu_2ZnSnSe_4$ nanocrystals in triethanolamine reaction media", Mater. Lett., 65(17), 2554-2557.   DOI
18 Liu, T., Jin, Z., Li, J., Wang, J., Wang, D., Lai, J. and Du, H. (2013), "Monodispersed octahedral-shaped pyrite CuSe 2 particles by polyol solution chemical synthesis", CrystEngComm, 15(44), 8903-8906.   DOI
19 Lu, J., Xie, Y., Xu, F. and Zhu, L. (2002), "Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals", J. Mater. Chem., 12(9), 2755-2761.   DOI
20 Panda, A.B., Glaspell, G. and El-Shall, M.S. (2006), "Microwave synthesis of highly aligned ultra-narrow semiconductor rods and wires", J. Am. Chem. Soc., 128(9), 2790-2791.   DOI
21 Qian, H., Qiu, X., Li, L. and Ren, J. (2006), "Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe (S) alloyed quantum dots", J. Phys. Chem. B, 110(18), 9034-9040.   DOI
22 Qin-Miao, C., Zhen-Qing, L., Yi, N., Shu-Yi, C. and Xiao-Ming, D. (2012), "Doctor-bladed $Cu_2ZnSnS_4$ light absorption layer for low-cost solar cell application", Chinese Physics B, 21(3), 038401.   DOI
23 Salome, P.M., Fernandes, P.A., Leitao, J.P., Sousa, M.G., Teixeira, J.P. and da Cunha, A.F. (2014), "Secondary crystalline phases identification in $Cu_2ZnSnSe_4$ thin films: Contributions from Raman scattering and photoluminescence", J. Mater. Sci., 49(21), 7425-7436.   DOI
24 Quiroz, H.P., Sena, N.J. and Dussan, A. (2014), "Microstructural and morphological properties of nanocrystalline $Cu_2ZnSnSe_4$ thin films: Identification new phase on structure", J. Phys.: Conference Series, 480(1), p. 012002.   DOI
25 Rath, T., Haas, W., Pein, A., Saf, R., Maier, E., Kunert, B. and Trimmel, G. (2012), "Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: influence of reactants on the chemical composition", Solar Energy Materials and Solar Cells, 101, 87-94.   DOI
26 Roe, F.J.C., Grant, G.A. and Millican, D.M. (1967), "Carcinogenicity of hydrazine and 1, 1-dimethylhydrazine for mouse lung", Nature, 216(5113), 375-376.   DOI
27 Shao, L., Zhang, J., Zou, C. and Xie, W. (2012), "$Cu_2ZnSnSe_4$ thin films by selenization of simultaneously evaporated Sn-Zn-Cu metallic lays for photovoltaic applications", Phys. Procedia, 32, 640-644.   DOI
28 Shei, S.C. and Lee, P.Y. (2013), "Synthesis of CZTSe nanocrystal prepared by a facile route in coordinating solvent from elemental sources", Nanotechnology, IEEE Transactions on, 12(4), 532-538.   DOI
29 Shockley, W. and Queisser, H.J. (1961), "Detailed balance limit of efficiency of p-n junction solar cells", J. Appl. Phys., 32(3), 510-519.   DOI
30 Shyju, T.S., Anandhi, S., Suriakarthick, R., Gopalakrishnan, R. and Kuppusami, P. (2015), "Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications", J. Solid State Chem., 227, 165-177.   DOI
31 Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. and Mitzi, D.B. (2014), "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency", Adv. Energy Mater., 4(7), 1301465.   DOI
32 Todorov, T.K., Reuter, K.B. and Mitzi, D.B. (2010), "High-efficiency solar cell with earth-abundant liquid processed absorber", Adv. Mater., 22(20), 156-159.   DOI
33 Vallejo, O.R., Sanchez, M., Pal, M., Espinal, R., Llorca, J. and Sebastian, P.J. (2016), "Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis", Mater. Res. Express, 3(12), 125017.   DOI
34 Wang, Y., Ai, X., Miller, D., Rice, P., Topuria, T., Krupp, L. and Song, Q. (2012), "Two-phase microwaveassisted synthesis of Cu 2 S nanocrystals", CrystEngComm, 14(22), 7560-7562.   DOI
35 Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K. and Bent, S.F. (2011), "Aqueous bath process for deposition of $Cu_2ZnSnS_4$ photovoltaic absorbers", Thin Solid Films, 519(8), 2488-2492.   DOI
36 Washington Ii, A.L. and Strouse, G.F. (2008), "Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes", J. Am. Chem. Soc., 130(28), 8916-8922.   DOI
37 Wibowo, R.A., Jung, W.H. and Kim, K.H. (2010), "Synthesis of $Cu_2ZnSnSe_4$ compound powders by solid state reaction using elemental powders", J. Phys. Chem. Solids, 71(12), 1702-1706.   DOI
38 Zhou, J., You, L., Yi, Q. and Ye, Z. (2013), "One-step synthesis of $Cu_2ZnSnSe_4$ microparticles via a facile solution route in triethylenetetramine reaction media and its characterization", Mater. Lett., 107, 225-227.   DOI
39 Zhou, B., Xia, D. and Wang, Y. (2015), "Phase-selective synthesis and formation mechanism of CZTS nanocrystals", RSC Advances, 5(86), 70117-70126.   DOI