• Title/Summary/Keyword: secondary reaction

Search Result 809, Processing Time 0.027 seconds

A Kinetic Study for the Reaction of 2,4-Dinitrophenyl Benzoate with Secondary Cyclic Amines

  • 엄익환;김명진;민지숙;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.523-527
    • /
    • 1997
  • Apparent second-order rate constants (kapp) have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl benzoate (DNPB) with 6 secondary cyclic amines in H2O containing 20 mole% DMSO at 25.0±0.1 ℃. The Bronsted-type plot (log kapp vs. pKa) shows a break at pKa near 9.1, e.g. two straight lines with βapp values of 0.67 and 0.44 for the low basic (pKa < 9.1) and the highly basic (pKa > 9.1) amines, respectively. Using an estimated k2 value of 3×109 sec-1, all the other microconstants (k1, k-1 and K) involved in the present aminolysis have been calculated. The k value decreases with increasing the basicity of amines while k1 and K values increase with increasing the amine basicity, as expected. Good linear Bronsted-type plots have been obtained for these microconstants of the present aminolysis of DNPB. The magnitudes of the slope of the Bronsted-type plots, k1 and k-1 have been calculated to be 0.43 and - 0.24, respectively, indicating the k-1 step is about two folds less sensitive than the k1 step to the amine basicity. The K value has been calculated to be 0.66, which appears to be much smaller than the one for other aminolyses showing general base catalysis. The small K value has been attributed to the absence of general base catalysis in the present aminolysis of DNPB.

A Study on Mechanical Properties of Oxygenated SiC Material (산화된 탄화규소재료의 기계적 특성에 대한 연구)

  • Sang Pill Lee;Jae Hwan Kwak;Jin-Kyung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.397-402
    • /
    • 2024
  • Silicon carbide materials undergo an oxidation reaction in a high-temperature oxidizing environment and show different characteristics depending on the test temperature and time. In particular, the added oxides form a secondary phase within the sintering process and exhibit different oxidation characteristics depending on the added sintering materials. Therefore, to evaluate the oxidation characteristics, the weight of the test piece and the thickness of the oxidation layer were observed, and the structure and oxidation characteristics of the material were analyzed using SEM. SEM observation showed that an oxide layer was formed on the surface of the liquid sintered silicon carbide material after it was oxidized at 1200 ℃, 1300 ℃, and 1400 ℃ for 10 hours, respectively. Then, a bending test was performed at each temperature on the test piece with the oxidation layer formed to evaluate the change in flexural strength. The strength was 466.6 MPa at 1200 ℃, 363.1 MPa at 1300 ℃, and 350.8 MPa at 1400 ℃. Al2O3-SiO2 oxidized at 1200 ℃ for 10 hours showed an increase in strength of about 21.0 MPa compared to the data before the oxidation test.

THE FAST PYROLYSIS CHARACTERISTICS OF LIGNOCELLULOSIC BIOMASS IN A BUBBLING FLUIDIZED BED REACTOR (기포 유동층 반응기내 목질계 바이오매스의 급속열분해 특성)

  • Choi, Hang-Seok
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.94-101
    • /
    • 2011
  • The fast pyrolysis characteristics of lignocellulosic biomass are investigated for a bubbling fluidized bed reactor by means of computational fluid dynamics (CFD). To simulate multiphase reacting flows for gases and solids, an Eulerian-Eulerian approach is applied. Attention is paid for the primary and secondary reactions affected by gas-solid flow field. From the result, it is scrutinized that fast pyrolysis reaction is promoted by chaotic bubbling motion of the multiphase flow enhancing the mixing of solid particles. In particular, vortical flow motions around gas bubbles play an important role for solid mixing and consequent fast pyrolysis reaction. Discussion is made for the time-averaged pyrolysis reaction rates together with time-averaged flow quantities which show peculiar characteristics according to local transverse location in a bubbling fluidized bed reactor.

Treatment of Genomic DNA with Restriction Enzyme(s) Improves Amplification Efficiency by Polymerase Chain Reaction (제한효소 처리된 Genomic DNA에 의한 Polymerase Chain Reaction 증폭 효율에 관한 연구)

  • Min Hae-Ki;Chang Young-Hyo
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.254-256
    • /
    • 2004
  • Polymerase chain reaction (PCR) is a powerful tool for precisely amplifying selected DNA sequences that have had a broad impact on genomic studies. When examining human $\alpha$- and $\beta$- tryptase genes which have 95% DNA homology, inconsistent PCR amplification of genomic sequences hampered our progress. This study suggests that long PCR technique on the original DNA digested with restriction enzymes improves both efficiency and sensitivity of PCR. These improved results seem to derived from the effective denaturation of the original genomic DNA template or reduction of formation of secondary structures that block either primer annealing or extension in PCR. Elimination of homo- or hetero-duplex products derived from highly homologous genes provides an additional advantage in this study. This communication describes how the use of restriction enzymes improved these efficiencies, and also facilitated studies of highly homologous genes including tryptase genes.

Preparation of Ultrafine Barium Titanate Powder by Slurry Spray Pyrolysis (슬러리 분무열분해에 의한 초미립 티탄산 바륨 분말 제조)

  • Lee, Jong-Ho;Hur, Kang-Heon;Lee, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.137-145
    • /
    • 2009
  • A remarkable improvement of the productivity in barium titanate by slurry spray pyrolysis process was realized by supplying solid source slurry into the rector. The produced barium titanate powders showed uniform powder properties, and reproducibility with higher tetragonality in the range of 80$\sim$200 nm, case by case. The secondary calcination experiments of the as-prepared powders by spray pyrolysis revealed that the powders as-prepared over 700$^{\circ}C$ showed perfectly different behavior with the lower temperature's ones and the solid state reaction’s case. The result was discussed in terms of the reaction mechanism based on the activation energy analysis.

Stevens-Johnson Syndrome Induced by Carbamazepine Treatment in a Patient Who Previously Had Carbamazepine Induced Pruritus - A Case Report -

  • Bae, Hyun Min;Park, Yoo Jung;Kim, Young Hoon;Moon, Dong Eon
    • The Korean Journal of Pain
    • /
    • v.26 no.1
    • /
    • pp.80-83
    • /
    • 2013
  • Stevens-Johnson syndrome (SJS) is a rare but life-threatening skin reaction disease and carbamazepine is one of its most common causes. We report a case of SJS secondary to carbamazepine in a patient with previous pruritus due to carbamazepine which was given for treatment of trigeminal neuralgia. We would like to caution all providers that carbamazepine readministration should be avoided in the patient with a previous history of SJS or adverse skin reaction. In addition, we strongly recommend gradual titration when initiating treatment with carbamazepine.

Charge-discharge characteristics of $LiMnPO_4$ prepared by hydrothermal synthesis (수열법을 이용한 $LiMnPO_4$의 충방전 특성)

  • Kong, Ming-Zhe;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.420-421
    • /
    • 2005
  • $LiMnPO_4$ particle were prepare by a hydrothermal reaction. The particles prepared by adding polyethylene glycol(PEG) and carbon to the starting reaction solution were fine crystalline in the range of 200-300nm. The discharge capacity of the sample as a lithium secondary battery was $25mAhg^{-1}$ at $0.04mAcm^{-2}$, larger than that of the sample prepared by the hydrothermal method without PEG and carbon.

  • PDF

Probing of Electrochemical Reactions for Battery Applications by Atomic Force Microscopy

  • Kim, Yun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.98.2-98.2
    • /
    • 2013
  • Electrochemical phenomena underpin a broad spectrum of energy, chemical, and information technologies such as resistive memories and secondary batteries. The optimization of functionalities in these devices requires understanding electrochemical mechanisms on the nanoscale. Even though the nanoscale electrochemical phenomena have been studied by electron microscopies, these methods are limited for analyzing dynamic electrochemical behavior and there is still lack of information on the nanoscale electrochemical mechanisms. The alternative way can be an atomic force microscopy (AFM) because AFM allows nanoscale measurements and, furthermore, electrochemical reaction can be controlled by an application of electric field through AFM tip. Here, I will summarize recent studies to probe nanoscale electrochemical reaction in battery applications by AFM. In particular, we have recently developed electromechanical based AFM techniques for exploring reversible and irreversible electrochemical phenomena on the nanoscale. The present work suggests new strategies to explore fundamental electrochemical mechanisms using the AFM approach and eventually will provide a powerful paradigm for probing spatially resolved electrochemical information for energy applications.

  • PDF

Photochemical C$_4$-Cycloadduct Formation between 5(E)-Styryl-1,3-dimethyluracil and Some Olefins-Via Photochemical Diels-Alder Type [4 + 2] Adduct

  • Shim, Sang-Chul;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.376-380
    • /
    • 1987
  • The cyclobutane forming photocycloaddition reaction of 5(E)-styryl-1,3-dimethyluracil with some olefins occurs on the 5,6-double bond of uracil ring rather than the expected central double bond via an intermediate, probably the photochemical Diels-Alder type adduct. This intermediate formed on short term irradiation of 5(E)-styryl-1,3-dimethyluracil and 2,3-dimethyl-2-butene solution is converted into the $C_4$-cycloadduct on the prolonged irradiation. Quantum yield of the intermediate formation is not linear with the concentration of 2,3-dimethyl-2-butene probably due to the secondary reaction accompanied with the complex reaction kinetics. The intermediate is formed from the lowest excited singlet state.

Calculation of Proton-Induced Reactions on Tellurium Isotopes Below 60 MeV for Medical Radioisotope Production

  • Kim, Doohwan;Jonghwa Chang;Yinlu Han
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.361-371
    • /
    • 2000
  • The 123Te(p,n)123I, 124Te(p,n)124I and 124Te(p,2n)123I reactions, among the many reaction channels opened, are the major reactions under consideration from a diagnostic purpose because reaction residuals as the gamma emitters are used for most radiophamaceutical applications involving radioiodine. Based on the available experimental data, the absorption cross sections and elastic scattering angular distributions of the proton-induced nuclear reaction on Te isotopes below 60 MeV are calculated using the optical model code APMNK. The transmission coefficients of neutron, proton, deuteron, trition and alpha particles are calculated by CUNF code and are fed into the GNASH code. By adjusting level density parameters and the pair correction values of some reaction channels, as well as the composite nucleus state density constants of the pre-equilibrium model, the production cross sections and energy-angle correlated spectra of the secondary light particles, as well as production cross sections and energy distributions of heavy recoils and gamma rays are calculated by the statistical plus pre-equilibrium model code GNASH. The calculated results are analysed and compared with the experimental data taken from the EXFOR. The optimized global optical model parameters give overall agreement with the experimental data over both the entire energy range and all tellurium isotopes.

  • PDF