• Title/Summary/Keyword: secondary orthopyroxene

Search Result 5, Processing Time 0.02 seconds

Silica Enrichment in Mantle Xenoliths Trapped in Basalt, Jeju Island: Modal Metasomatic Evidences (제주도 맨틀포획암내의 실리카 부화작용: 모달 교대작용의 증거)

  • Yu, Jae-Eun;Kim, Sun-Woong;Yang, Kyoung-Hee
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.61-75
    • /
    • 2011
  • Mantle-derived xenoliths, corresponding to spinel harzburgite and lherzolite in alkali basalts from Jeju Island, are metasomatized to various extents. They contain distinctive secondary orthopyroxene, forming corona or poikilitic textures. It clearly indicate that this secondary orthopyroxene has been produced at the expense of olivine along the grain boundaries and margins, suggesting silica-enriched metasomatic melt infiltrated through grain boundaries. Based on the geotectonic characteristics of Jeju Island and textural characteristics and major elements composition of mantle xenoliths, it is suggested that the silica-enriched melt/fluid could have derived from the ancient subducted slab, possibly in the mantle wedge, implying that the high $SiO_2$ activity in the lithospheric upper mantle beneath Jeju Island at that time.

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

Granulite xenoliths in porphyroblastic gneiss from Mt. Jiri area, SW Sobaegsan massif, Korea (소백산육괴 서남부 지리산지역의 반상변정질 편마암에서 산출되는 백립암질 포획암)

    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.34-45
    • /
    • 1999
  • Mafic granulite xenoliths are found in precambrian porphyroblastic gneiss of the Mt. Jiri area, SW Sobaegsan massif, Korea. The xenoliths are rounded to ellipsoidal in shape, 50-100 cm in length and coarse-grained with granoblastic and foliated texture. The xenoliths consist of orthopyroxene, garnet, biotite, plagioclase, quartz, ilmenite and secondary orthoamphibole. Orthopyroxene is mostly resorbed and rimmed by coronitic orthoamphiboles. Garnets occur as porphyblasts and are zoned with higher pyrope content in cores than in rims. Geothermo-barometry results yield conditions of about $800-850^{\circ}C$, 6 kb and $500^{\circ}C$, 4 kb for early and retrograde stages of equilibration, respectively. According to available geochronological data, it is suggested that the granulite facies metamorphism occurred prior to 2.1-1.9Ga and that the area was superimposed by the high-grade (over $600-700^{\circ}C$) metamorphism between 1.9-1.7Ga, followed by cooling during uplift.

  • PDF

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area (백두산 지역의 마이오세 알칼리 현무암에 포획된 페리도타이트의 암석학적/지화학적 특성)

  • Kim, Eunju;Park, Geunyeong;Kim, Sunwoong;Kil, Youngwoo;Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.311-325
    • /
    • 2017
  • Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.